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SUMMARY

A numerical simulation of bubble-type vortex breakdown using a unique
discrete form of the full three-dimensional, unsteady incompressible Navier-
Stokes equations was performed. The Navier-Stokes equations were written in
a vorticity-velocity form and the physical problem was not restricted to
axisymmetric flow. Based on the results of a previous study, the problem
was parameterized in terms of a Rossby number-Reynolds number basis. Utili-
zation of this parameter duo was shown to dictate the form of the free-field
boundary condition specification and allowed control of axial breakdown
location within the computational domain. The structure of the breakdown
bubble was studied through time evolution plots of planar projected velocity
vectors as well as through plots of particle traces and vortex lines. These
results compared favorably with previous experimental studies. In addition,
profiles of all three velocity components are presented at various axial
stations and a Fourier analysis was performed to identify the dominant
circumferential modes. The dynamics of the breakdown process were studied
through plots of axial variation of rate of change of integrated total
energy and rate of change of integrated enstrophy, as well as through

contour plots of velocity, vorticity and pressure.
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NOMENCLATURE

a an adjustable constant associated with the vortex core
diameter :
A n X mrow vector where m is the number of unknowns in a
cell ‘
[BnJ 3x3 exponential transformation matrix
c a vector function, the cross product of which is
divegrence free
1 bui auj
e defined as » ('ax—j + '67;)
Ej scalar quantity in Kaczmarz relaxation scheme
g boundary condition for the velocity vector
(hx,hy,hz) defined as (Ax/2,Ay/2,Az/2) respectively
(Fx,ﬁ ,ﬁz) computational domain lengths in the x, y and z directions,
y respectively
K : a constant proportional to circulation
P pressure variable
r radial coordinate
r- radial reference length defined as (2v/a) Y2
r* radius where the swirl velocity is a maximum
Ry residual quantity in Kaczmarz relaxation scheme
* *
Re Reynolds number; defined as Uvr
Ro Rossby number; defined as ——
r Q
t time variable
(u,v,w) velocity components in (x,y,z) system of coordinates
respectively
u free stream axial velocity

u axial velocity at a radius equal to r
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axial velocity excess (or deficit) at the vortex
centerline

swirl velocity

Cartesian system of coordinates:
Z-spanwise

x-axial, y-transverse,

nondimensional coordinates for use in grid generation;
0<(x,y,z)<l

transverse and spanwise coordinates corresponding to the
location of the vortex centerline

defined as (Ax/Az,Ax/Ay,Ay/Az), respectively
defined as UO/UG

central difference spatial operators

central difference time operator

discretization intervals

stretching parameter for grid in y and z directions

transformed vorticity in (x,y,z) system of coordinates,
respectively

udx va

defined as (23-, 2—-), respectively

defined as (At/Ax,At/Ay,At/Az), respectively
spatial averaging operators

time average operator

kinematic viscosity

density

stretching parameter for grid in x direction
t

defined as t,;; - tn+%@

variables related to the gradient of vorticity

a scalar quantity used in the Helmholtz projection

vorticity components in (x,y,z) system of coordinates
respectively

rate of rotation taken in the limit as r-+o
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INTRODUCTION

Vortices and vortical motions have played an important role in the
development of theoretical fluid mechanics. Fof instance, the Helmholtz
Theorems of Vorticity and generalizations py Kelvin, Crocco and others
established flow properties involving the kinematics of vortex lines and
the dynamics of vorticity. The theory of lifting surfaces, developed by
Prandtl, Kutta and Joukowski, is based on the concept of a bound
vortex, Recently, the recognition of large scale coherent vortical
structures in turbulent flows has resulted in renewed interest in the

study of vortices.

Although no general definition of a vortex exists, it can be
thought of as a collection of fluid particles rotating around a common
axis. Mathematically, vorticity is defined as the curl of the velocity
vector and is equivalent to twice the angular velocity of a fluid
particle. In addition, it is not necessary for a vorticity field to

represent a vortex, an example being a parallel shear flow.

The most common development of a vortex occurs when a boundary
layer separates from a surface and rolls up into a wake vortex. Tip
vortices fall into this class. Tip vortices are generated when a fluid
flows against a finite plate or sharp edged body at a nonzero angle of
attack. These vortices are often highly stable structures and are

characterized by a strong axial flow. Other examples of vortices with



an axial velocity component include tornados and waterspouts, intake

vortices and swirling flows in pipes and tubes,

The presence of tip vortices in the wake of large aircraft
constitute a hazard in areas of dense air traffic. These vortices can
cause severe rolling of smaller aircraft that enter them. They are
dissipated either by viscous dissipation, a sinusoidal type instability

or, infrequently, by a core bursting mechanism.

Leading edge vortices shed from a delta wing induce a velocity
field that results in increased 1ift and stability of the wing [1].
However, ‘under certain conditions related to the angle of attack of the
wing, these vortices can undergo a sudden and drastic change in
structure known as vortex breakdown. This breakdown can alter severely

the aerodynamic characteristics of the wing.

Swirling flows bhave been wused to stabilize high intensity
combustion processes [2]. Here a recirculation zone acts to stabilize
combustion by recirculating hot gases to the root of the flame. In
addition, combustion lengths are reduced due to the high levels of

entrainment induced by the recirculation zone.

The ability to control these vortical structures is an important
and active area of research. For example, it is desirable to delay the
breakdown process over a delta wing and accelerate the process in
regards to trailing wing tip vortices. In combustion applications, the
internal structure of the recirculation (breakdown) region is of
¢ritical importance. Unfortunately, a comprehensive theory to describe

the breakdown process and the parameters affecting it is Iacking



presently, although several have been proposed. A review of these

theories and supporting numerical and experimental work follows.

Vortex breakdown was first observed experimentally by Peckham and
Atkinson [3]. They observed that vortices shed from a delta wing at
high angles of attack appeared to "bell out" and dissipate several core
diameters downstream from the trailing edge of a wing., Since then,
vortex breakdown has been observed in swirling flows in straight pipes,
nozzles, diffusers and combustion chambers, [2,4] and tornados [5].
Seven types of breakdown have been identified experimentally, [6]
ranging from a mild "spiral" type to a strong "bubble" type breakdown.
Observations in the early 1960's spurred considerable effort to develop
a theoretical explanation of the vortex breakdown phenomena. Three
schools of thought can be identified, all of which may be divided into
three separate groups: 1) The concept of a critical state (7,8,9];
2) Analogy to boundary layer separation [10,11] and, 3) Hydrodynamic
instability (12,13,14].

Squire (7] appears to be the first to have performed a theoretical
analysis of vortex breakdown. He suggested that if standing waves were
able to exist on a vortex core then small disturbances, present
downstream, could propogate upstream and cause breakdown, This is
analogous to the earlier work of Taylor [15] on the stability of
circular Couette flow, There, a linear stability analysis was performed
to ascertain the ability of the base flow to support axisymmetric
standing wave disturbances. Two of the cases studied by Squire assumed
that the vortex flow was inviscid and axisymmetric. The assumed form of
the upstream velocity distribution resulted in a 1linear disturbance

equation which he then solved to determine a condition under which an



inviscid, axisymmetric, steady perturbation to the flow could exist.
This condition, which was necessary for the existence of a standing
wave, was taken to mark the transition between subcritical and
supercritical states. . In Squire's first case, the axial velocity, U,
was considered to be a constant, The dimensionless swirl velocity V was
taken piecewise as that of solid body rotation inside a core of unit
radius (V=V,r) and connected with a potential vortex outside (V=V,/r).
A constant, V,, was used to control the swirl. He found that for
standing waves to exist a swirl parameter, "k", which was the ratio of
the maximum swirl speed to the axial speed (Vmax/U), had to be greater
than, or equal to 1.20. When k=1.20 the wave is infinitely long, but it

has a finite wavelength for k>1.20.

In the second case U was also taken to be a constant, but the swirl
velocity was assumed to be V = (VO/r)(l-e'rz) with V, a nondimensional
parameter, Again Squire found that there was a condition on the swirl
parameter k for the existence of a standing wave. This condition was

k=Vmax/>1.0 where we note that Vmax=°'638 Vo-

Benjamin [8] examined this phenomena fr&h a different point of
view, He considered vortek breakdown to be a finite transition between
two dynamically conjugate states of flow, similar to the occurrence of a
hydraulic jump in open channel flow. These are a subcritical flow,
which is defined as the state that is able to support standing waves,
and the conjugate supercritical flow which is unable to support standing
waves., Subcritical flows generally have higher swirl velocities than
the conjugate supercritical flow. In this context, the work of Squire
gives a condition marking the interface between these two states. As in

the work of Squire, a universal characteristic parameter was defined



.which delineates the critical regions of the flow. This parameter,

denoted by N, is the ratio of absolute phase velocities of long
wavelength waves which propagate along the vortex in the axial
direction, i.e., N=(C + C_)}/(C_-C_). Here C, and C. are the phase
velocities of the waves which propagate with and against the flow
respectively., For N>1 the flow conditions are supercritical and for

N<1l, subcritical.

Benjamin applied this theory to a specific vortex flow, defined by
a constant axial velocity, U, and V=v°r, 0<r<1 and V=Vo/r, 1<r<R, If
R»=, this is just the combined vortex studied by Squire [7]. Benjamin
found that the critical condition was the same form as Squire's. The
precise value of the constant depends on the value of R but lies between
1.92 when R=1 and 1.20 when R approaches infinity. Thus Benjamin,

although starting from a different perspective, arrived at the same

critical condition for a combined vortex as did Squire.

A recent paper by Ito, Suematsu, and Hayase [16] examined both
stationary and unsteady vortex breakdown in an inviscid, incompressible
fluid. They considered the stability of a columnar \}orte)g subjected to
small amplitude disturbances. The disturbances considered were
axisymmetric as well as asymmetric and either steady or unsteady. Their
analysis produced a criterion for breakdown from the requirement for
existence of solutions to their disturbance equations, A comparison of
these results with those of Benjamin [8], for the case of a finite
radfus pipe containing a rigid-body rotation, gave the same criterion
for breakdown. The important aspect of the work of Ito et al. lies in
their interpretive criterion. Their nondimensionalization leads to the

Rossby number as the controlling parameter. For example, in the case of



swirling pipe flow conéisting of solid body rotation, the relevant
scales are the axial velocity U, pipe radius r, and constant angular

velocity of the flow, Q. Thus the dimensionless controlling parameter

is: R°=U/roQ.

Tsai and Widnall [17] examined a group velocity criterion which can
be considered as a variation of the phase velocity criterion of Benjamin
[8]. Their analyses of swirling pipe flow is more consistent with the
view that breakdown occurs due to a wave trapping mechanism [18]. They
assumed that the radial and axial velocity distributions could both be
fit to exponential profiles [19]. They used a least squares fit given
by Garg and Leibovich to calculate the dispersion relation from linear
parallel stability theory. The group velocity associated with various
flow profiles was then calculated. The results showed that upstream of
breakdown the group velocity of both symmetric and asymmetric modes was
directed downstream. Even though their criticality condition of zero
group velocity proved to be an accurate guide for the various types of
breakdown, they were unable to establish a relationship between vortex

breakdown and wave trapping.

Bossel [9] concluded that breakdown was not analogous to the
hydraulic jump, rather it was a regular feature of the Navigr—Stokes
equations for the given flowfield. This flowfield is considered to be
supercritical with rigid initial rotation and some axial deceleration
near the axis. Bossel divided the flowfield into two distinct regions:
(1) An inner region, which could contain a stagnation point, and was
approximated by the equations for an inviscid rotating flow; and (2), a
viscous quasi-cylindrical region which surrounds the inner region.

Bossel assumed the outer solution was known which produced conditions at



the boundary of the inviscid region that will result in breakdown. For
a rigid rotation the inviscid equation for the stream function becomes
linear and solutions were obtained by superposition. Results which

resemble the configuration of a vortex breakdown were obtained.

Hall [11] considered vortex breakdown to be analagous to the
separation of a two dimensional boundary layer. He assumed that a
failure of the quasi-cylindrical approximation through large axial
gradients signaled an impending vortex breakdown. A numerical
experiment was performed to test the theory using experimental data
obtained by Kirkpatrick [20]. A retardation of the flow along the axis
was found., At this point, computations failed due to the inability of
the iteration scheme to coverage. Hall considered this to represent the
failure of the quasi-cylindrical approximation. In addition, stream
tube divergence, pressure gradient, and swirl magnitude were varied
parametrically and effected the failure of the quasi-cylindrical
approximation 1h a manner consistent with their affect on vortex
breakdown. Hall also found that the effect due to a change in Reynolds

number was small.

Linear hydrodynamic stability theory investigates only the
amplification or decay of infinitesimally small disturbances imposed on
the base flow. Breakdown is then assumed to be analogous to laminar-
turbulent transition. Of course, as pointed out by Leibovich [211],
breakdown can occur with little sign of instability and conversely a
vortex flow may become unstable and not undergo breakdown. In the case
of zero axial velocity the Rayleigh [22] criterion (that the square of
the circulation should nowhere decrease as r increases) provides a

necessary and sufficient condition for flow stability.



That vortex breakdown may be a result of an hydrodynamic
instability was first proposed by Ludwig [12]. He found a stability
boundary with respect to spiral disturbances for an inviscid rotating
flow in an annulus. .It was proposed that this instability could be
amplified and induce an asymmetry in the core., Ludwig's idea has not
been widely accepted due to the difficulty of relating the geometry of

his analyses to vortex breakdown,

Howard and Gupta [13] have shown that the stability of the quasi
cylindrical approximation s guaranteed if the "Richardson number"
criterion r'.l(aul,,/ar')";"ve [a(rVe)/ark 1/4 is satisfied. This implies
that the role of swirl is purely stabilizing for axisymmetric
disturbances. In practice, nearly all approach flows turn out to be

stable to axisymmetric disturbances [21].

Pedley [23] considered the stability of an almost fully developed
viscous flow in a rotating pipe. He found that the flow became unstable
to asymmetric disturbances for sufficiently small values of the Rossby
number (defined in terms of the rate of rotation of the pipe, the pipe
radius and the axial. velocity of the fluid) —at a critical Reynolds

number of 82.9.

Lessen, Singh and Paillet [14] defined a parameter, q, involving
the ratio of the magnitude of the maximum swirl to that of the maximum
axial velocity. This parameter completely determined the inviscid
stability characteristics of the flow defined by the equations

2

Vg= (q/r)(l1-e" ), u=e" . Thus a wake or jet-like axial velocity

profile does not affect stability. They found that the flow was stable

to all disturbances for g>1.5 and unstable to nonaxisymmetric



disturbances for smaller values of q. Thus, from the point of view of
stability, the role of swirl is stabilizing with respect to axisymmetric
disturbances, and destabilizing with respect to asymmetric disturbances

over a range of q.

After the initial observations of vortex breakdown by Peckham and
Atkinson [3], experimentalists began studying vortex breakdown in a more
controllable setting. Harvey [24] performed experiments in a long tube,
imparting a swirl velocity on the fluid as it entered. This was done
using a set of adjustable vanes mounted in the inlet section. Harvey
concluded that for 1low swirl velocities the classical vortex was
obtained but as the swirl was increased a breakdown bubble formed. He
also concluded that the breakdown was due to a critical state phenomena
and not a hydrodynamic instability since the flow reverted to a normal
swirling flow downstream of the breakdown bubble. Instabilities usually
result in increasingly large amplitude velocity fluctuations ending in a

turbulent flow.

Sarpkaya [25] described experiments in swirling flows in a
diverging cylindrical tube. He observed three types of breakdown;
double hel%x. spiral, and axisymmetric. The type of breakdown that
occurred depended on a combination of Reynolds number (based on tube
diameter and mean axijal ve]ocit}) and circulation., For 1000<Re<2000 the
spiral or double helix breakdown was observed. Axisymmetric breakdown
was found to develop from the double helix or spiral form, or as an
axisymmetric swelling of the core. For high Reynolds numbers and
circulation the axisymmetric type breakdown occurred as a swelling of
the vortex core. He also noted that the axisymmetric breakdown

responded to changes in upstream and downstream flow conditions in a



manner analagous to hydraulic jump in an open channel flow. In a later
paper, Sarpkaya [26] concluded that Benjamin's finite transition concept
was in complete agreement with experimental results in the region where
axisymmetric breakdown occurred (high swirl and Re). The spiral
breakdown appeared to be a consequence of the instability of the flow
due to asymmetric disturbances. He concluded that the overall mechanism
for vortex breakdown might encompass finite transition and hydrodynamic

instability theories, each applicable in a specific region.

Faler and Leibovich [27] have mapped the internal structure of an
axisymmetric type vortex breakdown using a laser-Doppler anemometer.
They found that the interior of the bubble, which contained a two celled
structure, was dominated by low frequency periodic velocity fluctua-
tions. The magnitude of these fluctuations was greatest in the rear
portion of the bubble. In addition, four stagnation points existed on

the axis.

The affect of an adverse pressure gradient on vortex breakdown has
been examined by Sarpkaya [28] and more recently by Delray et al.
p29]. Delray found experimental 1limits for ’vortex breakdown as a
function of adverse pressure gradient and vortex strength. Pressure
measurements showed considerable pressure increase within the core for
small variations outside the core. In general, as the adverse pressure
gradient increased, the swirl required to induce vortex breakdown

decreased.

Numerical solutions for vortex bursting have been reported by at
least seven previous investigators [30,31,32,33,34,35,36]. In all

cases, the flows were assumed to be incompressible and were restricted
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to studies of laminmar, axisymmetric systems. The solutions by Kraus
et al. and Hafez et al. were time dependent while the others were steady

state solutions.

Kopecky and Torrance [31] considered axisymmetric swirling flow
through a cylindrical tube. The fluid entered the tube with an
exponential swirl velocity. This distribution behaved as a solid body
near the axis and as a potential vortex away from the axis, representing
a solution to the Navier-Stokes equations for the limiting case of
Reynolds number approaching infinity. A parametric study was performed
with Reynolds numbers (based on tube radius and constant axial velocity)
ranging from 50 to 500 and swirl ratios from 0.4 to 10. The development
of a recirculation zone was demonstrated as the swirl was increased for
fixed Reynolds number and core diameter. Similar results were obtained
when the core diameter and swirl were fixed while the Reynolds number
was increased. In all cases the breakdown appeared to form at the inlet
station. With a grid spacing of 0.25 in the streamwise direction the
major portion of the breakdown was contained within about four grid
points; While this grid seems excessively coarse, Kopecky and Torrance
reported that doubling the number of grid points in the streamwise

direction produced similar results.

Graboﬁski and Berger [33] solved the steady axisymmetric Navier-
Stokes equations for a free vortex approximated by a two parameter
family of assumed inflow distributions. The inflows were the polynomial
profiles given by Mager [37] in his integral analysis, imbedded in an
irrotational flow. The equations of motion were written in terms of
stretched coordinates in the radial and axial directions. At inflow, a

parameter, alpha, could be varied to allow for jet like or wake Tike
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axial profiles. An "artificial compressibility" technique was used to
solve the equations of motion. Solutions were obtained which exhibited
many of the characteristics of vertex breakdown for Reynolds numbers up
to 200. These sdglutions were obtained with upstream conditions that
were, 1in many cases, subcritical, Their results appear to refute the
finite transition theory of Benjamin [8] which required the flow

upstream of breakdown to be supercritical.

Narin [32] investigated the occurrence of vortex breakdown for
threé different flow configurations: (1) a straight tube, (2) a step
tube, and (3) confined jet mixing. This appears to be the only work
investigating the breakdown of a confined jet, which consists of a
swirling jet discharging into a coaxial nonrotating surrounding
stream. For this configuration, the resulting flow field depended on
the radius of the enclosing tube, jet velocity and swirl ratio, and on
the velocity of the surrounding stream. In general, increa;ing Reynolds

number and swirl ratio enhanced the severity of the vortex breakdown.

Benay [35] has also simulated vortex breakdown by a numerical
solution of the 1laminar axisymmetric Navier-Stokes equations. At
inflow, an exponential circumferential ve1oc1'ty distribution was imposed
in a parametric study to determine the effect of vortex core radius,
Reynolds number (based on tube radius and free stream axial velocity),
and tangential and axial velocity on vortex breakdown. In general, an
increase in the Reynolds number or swirl ratio resulted in a more

pronounced recirculation zone.

Excellent review articles summarizing vortex breakdown research

have been published by Hall [38] and Leibovich [21,39]. Since relevant
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numerical work only began in the mid 1970's, only Leibovich's survey
includes those investigations. He noted that the numerical solutions do
not show a two celled structure within the breakdown bubble as revealed
in physical experiments by Faler and Leibovich [27]. 1In addition, Faler
and Leibovich measured four stagnation points along the axis, whereas
numerical experiments have shown only two. However, this structure was
later claimed to have been computed by Kraus, Shi, and Hartwich [34] by
studying the flow in a time dependent manner. An examination of their
computed streamlines reveals that the bubble has 1ifte& 6ff the axis for
some of the time levels shown, At these time levels no stagnation
points are present along the axis. Leibovich is also critical of the
fact that the numerical solutions “contain strong axial gradients right
up to the initial axial station." He suggests that the bubble may pass
through the initial stations if the inlet boundary conditions were
relaxed. In addition, axisymmetric numerical solutions show bubbles
that increase in size as swirl is increased, a result that is not
consistent with experimental observations. Furthermore, axisymmetric
numerical simulations are unable to predict spiral type breakdowns,
which are a common occurrence in experiments [6,25]. Thus, Leibovich
has concluded that "the assumption of steady axisymmetric motion may not

be adequate to compute all the detailed structure of vortex breakdown."

The purpose of this work was to study numerically the spatial and
temporal evolution of a class of vortical structures. Wing tip vortices
are of specific interest, but the influence of wing geometry on the tip

vortices was beyond the scope of this analysis. A numerical solution

has been chosen because closed form analytic solutions of the equations

.of motion are unlikely to be found without assuming overly restrictive,
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simplified flow fields. An experimental approach was also deemed
imprac.tical because of the difficulty in making accurate measurements in
regions where the velocity gradients are extreme, which is often the
situation during vortex breakdown, Thus, the unsteady, three-
dimensional, -laminar Navier-Stokes equations have been integrated
numerically to study the parameters akffecting_ the evolution and possible

breakdown of an isolated wing tip vortex.

Authors of the numerical studies cited previously report breakdown
at or immediately downstream of the inflow boundary. It will be shown
that these previous computationé]- results can be re-evaluated in terms
of a single parameter which identifies the cause of the breakdown at
inflow. | T hrough an examination of several previous studies
concentrating on standing wave analyses, it 1is shown that the
controlling parameter is the Rossby number. A means of avoiding the
problem of breakdown at inflow is suggested, and the numerical analyses
is then performed m’tﬁ the Rossby number and Reynolds number as the
nondimensional parameters, [t is important to emphasize the fact that
the algorithm was not restricted. by an axisymmétry requirement. This
allowed for the existence of asymmetric disturbances which may be
important in the breakdown process. Previous numerical simulations have
precluded this possibility. The numerical algorithm which has been used
is‘an implementation of the “velocity-vorticity" formulation of Gatski,

Grosch and Rose [39]. The pressure, although not a variable in the

formulation, was computed.

Contour plots of pressure, Bernoulli's constant, axial velocity and
vorticity are displayed as a part of this investigation. Particle

traces, vortex lines and velocity vector plots have been obtained using

14



the PLOT3D, a three-dimensional color graphics program implemented on an
Iris workstation at NASA Langley Research Center, In éddition, the
rates of change of energy and enstrophy were computed and plotted as a
function of axial location. Conclusions have been drawn which may be
useful in the interpretation, as well as the modification and control,

of wing tip vortices. Finally, the internal structure of the vortex

breakdown bubble is discussed.
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THE ROSSBY NUMBER - BREAKDOWN CRITERION

The Rossby number is an important control parameter in the study of
large scale atmospheric and oceani¢ motions., It is a measure of the
relative importance of the Coriolis and inertial forces on the fluid
motion. The Coriolis force is due to the rotation of fluid and is
directed perpendicular to the axis of rotation. In the study of
geophysical fluid dynamics, fluid rotation is generally considered to be
of the rigid body type. However, the Coriolis forces can be important
for a variety of circumferential velocity distributions associéted with
other flows, such as those occurring in wing tip and leading edge
vortices. When significant, the Coriolis acceleration represents a
restoring force, providing a mechanism for the creation of waves (in the
absence of sufficient damping). It tends to Trestore fluid particles
displaced 1atera11y from their equilibrium positions. However, the
restoring force can cause the fluid particles to overshoot their
original locations, setting up an oscillatory motion. Under some
conditions the fluid can sustain these oscillations, and in the casé of
vortex flows, these wavelike fluctuations can then propagate along the
axis of the vortex, Waves of this type are known as inertial waves
[40].h_ The intent of this chapter is to show how the vortex breakdown
phenohenon can be characterized in terms of the ability of a base flow

to support these waves. This effect can be described, in terms of the



Rossby number, and can be justified by using the theoretical, experi-

mental and computational literature discussed in the introduction.

Throughout the remainder of this chapter a cylindrica] polar
coordinate system, (r, 8, x), with corresponding velocity components, w
in the radial (r) direction, v in the circumferential (8) direction, and

u in the axial (x) direction are employed.

The Rossby number can be developed naturally from the vorticity
transport equation and is defined as the ratio of the inertial forces to

the Coriolis forces as

- (2.1)

r

Ro

"

k4
where u 1is a representative velocity magnitude, r a characteristic

length, and Q, a characteristic rate of rotation of the flow. For the
flows considered in this study, r* is taken ¢to be the vortex core
diameter, defined as the radius of maximum swirl velocity. The
reference velocity u is taken as the axial velocity‘at the core radius
(r*). Wing tip vortices are characterized by a solid body type rotation
near the axis, and this‘is taken to be the- characteristic rate of

rotation, Q.

As discussed earlier, Squire [7], Benjamin (8] and Ito et al. [16]
were able to derive a criterion for the existence of standing waves on a
vortical base flow. Squire (7] and Benjamin [8] formulated this
criterion in terms of characteristic c¢ircumferential and axial
velocities. Here it will be shown that their criteria can be

reinterpreted in terms of a Rossby number.
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The most important case considered by Squire, in terms of a model
for vortex breakdown, was an exponential form for the circumferential
velocity profile, given by:

v 2

ve—1(1-e¢") (2.2)

with Vo used as a scaling parameter. The axial velocity was considered
to be a constant, i, e. u = U, Recall from the introduction that the

existence of neutrally stable standing waves occurred when
Vm/U = 1.0 (2ﬂ3}

- where Vg is the maximum swirl velocity. In addition, it should be noted
that the maximum swirl velocity using Squire's velocity profile is

*
Vy = 0.638 Vy, at r = 1.12.

Consistent with our previous definitions, the reference length, r*,
is given as:

r's 1,12, (2.4)

The reference velocity is the constant axial velocity, U. The charac-
teristic rate of rotation, Q, is given as:
Q= lim (v/r) = VO. (2.5)
. r+o

Hence the Rossby number is then given as:

Ro = 0.57. (2.6)

18



The combined vortex considered by 3enjamin [8] is given by

v = Vor kr<l
v = Vo/r 1<r<R (2.7)
u=U allr

where Vo is a constant, N

The critical condition, for R=1 and R + = is given as

VO/U 1.92 for R = 1

(2.8)

VO/U 1.20 for R.» =

The case R+=, corresponds to the combined . vortex studied by Squire
[7]. The case R=1 corresponds to a solid body rotation within a tube
and was also sfudied by Ito et al. [16]. The characteristic radius is
taken to be the distance at which the solid body rotation and irrota-

tional flow are matched. Thus, r s equal to unity and 2 is equal to

Vo° These results can be expressed in terms of a Rossby number as
Ro = 0,52 for R =1
. - - (209)
Ro = 0.83 for R » =

From the above analyses, it appears that a criterion based on the'Rossby
number can be used to delineate the critical regions of the vortex flow
but the critical value depends upon the type of vortex flow. This
criterion was then used as a basis for examining a variety of vortex
flows. Previous computational and experimental work has been examined
for both confined and unconfined flows to determine the range of

applicability of this Rossby number parameter.
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The computational studies of Kapecky and Torrance {31], Grabowski
and Berger [33], Benay [35] and Hafez et al. [(36] have been
reinterpreted in terms of the Rossby number. The ctiumferent1a1
velocity profiles used by Kopecky and Torrance and Benay are of
exponential form, similar to Eq. (2.2). Grabowski and Berger [33] and
Hafez et al. [36] express the circumferential velocity in terms of a
polynomial. Both profile types asymptote to solid body }otation near
the axis. The exponential profile asymptotes to an irrotational flow in
the far field., The polynomial profile is exactly irrotational oqutside a

specific core radius.

The circumferential velocity profile of Grabowski and Berger [33]

and Hafez et al. [36], in nondimensional form, is expressed as

v = Vr(2 - ré) O<r<l
(2.10)
v=Y/r 1<r<R
The axial velocity profile is given as
u=at (1-a)r(6-8r+3r2) O<r<l
(2.11)
u =1 1<r<R

where a is an adjustable parameter to allow for jet-like or wake-like
profiles. The circumferential velocity is a maximum at r = Y2/3, and is

equal to 1.088 V. The characteristic rate of rotation, Q, is given as

Q= 1lim (v/r) =2V U_/8 ) (2.12)
r+o
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where 5 is the dimensional core radius at the inflow plane and U_ the
dimensional free stream axial velocity. The radius of maximum swirl
velecity is given as

r = /373 . (2.13)

The characteristic axial velocity becomes

u = {a+ (1-a) 8/273 (1- /2/3)} U (2.14)
For the case of ¢ = 1,i.e. u = U_, the Rossby number becomes
Ro = .612/V (2.15)

where V is a parameter describing the circumferential velocity
profile, The Reynolds number, based on the free stream axial velocity,

Um, and the characteristic radius, r*, becomes
Re = v2/3 U_ &/v ' (2.16)

where U, 8/v is the form of the Reynolds number employed by Grabowski

and Berger [33] and Hafez et al. [36]. -

In a similar manner, expressions for the Rossby number and Reynolds
number can be extracted from the works of Kopecky & Torrance ([31] and
Benay [35]. Using the notation employed by these authors, the following

results are obtained for u = constant

Ro :---——-——1 (2.17)

1.12 /'8 ro

Re = 1.12

= (2.18)
/B (U, r /v).
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The results of the previous works are summarized in Fig. 1.1 in
terms of the Rossby and Reynolds numbers. Open symbols denote breakdown

and closed symbols denote no breakdown. That figure and Fig., 1.2 have

employed an axial velocity criterion to define breakdown. For confined
flows and numerical solutions, vortex breakdown is defined as a flow
which produces stagnation of the axial velocity component. For
unconfined flows, breakdown is considered to be a rapid expansion of the
vortex core accompanied by a sudden deceleration of the axial
velocity. A limit 1line exists that separates regions of vortex

breakdown from regions that experience no breakdown.

The computational results show a Reynolds number dependence in the
low Reynolds number range. From Fig. 2.1, it can be seen that for
Reynolds numbers above 100, viscous effects appear to be neg1igib1e and
inviscid theory can be expected to give good results. The dashed line
represents the inviscid standing wave theory developed by Squire [7] for

an exponentially varying circumferential velocity profile,

The experimental results appearing in Fig. 2.1 are all at higher
Reynolds numbers than the numerical simulations. Garg and Leibovich
[19] and Uchida et al. [41] made LDV measurements just upstream of
breakdown in a tube and vane apparatus. In the case of Garg and
Leibovich, a least squares fit of the data was used to obtain
exponential profiles for both the circumferential and axial velocity
distributions. These results were easily transIated to the Rossby
number and Reynolds number previously defined. The bubble form of
breakdown occurred at a Jlower Rossby number (~ 0.57) than the spiral

form (~ 0.63). From the available data, it appears that the Rossby

22



35®> x3340A dj3 buiM cudqunu Sploukay y1 M (s|oquAs
P3peys) umopyeIJq X3IJOA 404 J3quNu AQSSOY JO UOIR|IIL0) T°2 ‘64

“uz J3QWNU  SP|OUAY
501 h0! (01 201 0t
[rv—1 T | LB T [rv 71 T v v T 0
UMOPYDAJQ - S[OQWAS PI10S -1¢°0

UMODYD3.1Q OU - S|OQWAS uadQ

O 4 h'0 AG....V
v n,/
|llll.ﬂlll,lllll —0/— — — g'g J30Unu Agssoy
3JINbS ‘AJ03Y] — — — g Vv
ADN1s U3sald U | gg
joJaan 3 ubuis @ 10 13 ZaJoy v
[0 13 DPIUIN O Aouag O

3dA1 10J1dS ‘UDJA0Q|a] B 6409 [7 3duDJJI0) B A¥dadoy g —O0'T
9dA) 31qang ‘ydi1AoQial 3 6109 O 496409 3 I%SM0QDU9 O

[DIuBw] Jadx3 [0 J3WNN

23



*3s ) X33L0A 3bpa bupped ...oaszc_ SpLOoukay yim (soquAs
PIpeysS) UMOPYEIUQ XIIJOA J0J JIquNU AQSSOY 40 UOIRLILL0) 2°2 °6yd

7] 48qunu spouAay
(01 Nl 01 il
L T | L T v v 1 T h'0
UMOPXD3JQ - S[OQWAS P 0S
UMOPYDBJIQ OU - S]OQWAS U3dD . Jdg0
-6'8C =~ W 00=-"De®
v S 21 e ol
oM.m—” = D " n
s0°0 = ) g J30unu Aassoy
NUTJGSTNIY 8 UBBDDUJBA V
sJapuy O
3. —0°'¢
h = % ‘3¥0ad 3 UMy O
J .
¢ = 3 '9j03d B UMD O L .
o= Ty e

24




number at inflow, in the case of the bubble form of bréakdown, was
already below the level of the Rossby number at which the spiral form of
breakdown occurred. The Rossby number for the Uchida et al. work,
obtained from plots of the axial and circumferential velocity profiles,
equaled 0.64 for the bubble form of breakdown. Note the excellent
agreement between these confined experimental flows and the inviscid

standing wave analyses of Squire.

Singh and Uberoi [42] measured the velocity distribution of a wing
tip vortex at several axial stations along the vortex core. A laminar
flow wing was used to generate the vortex. .Their measurements
provided enough information to obtain an estimate of the Rossby number,
(~ 0.60) and Reynolds number, (~ 13000) just upstream of a region in
which the axial velocity decreases rapidly to 0.3 U_ , suggesting vortex

breakdown.

Based on Fig. 2.1 the critical Rossby number for the symmetric form
of breakdown for the trailing wing tip class of vortices is
approximately 0.60. The computational results indicate that for
Reynolds numbers below 100, the value of the c;itical Rossby number is
decreased, undoubtedly due to the increased damping effects of viscosity

on the wave motions.

Figure 2.2 displays the Rossby number-Reyno]ds number relationship
for leading edge vortices. The experimental data were obtained from
reports by Owen and Peake [43], Anders [44] and Verhaagen and Kruisbrink

(45]. Once again, open symbols denote no breakdown and closed symbols

denote breakdown,
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Anders [44] made LDV measurements of a leading edge vortex over a
delta wing at two different angles of attack; 19.3° and 28.9°., The
vortex produced by the wing at the lesser angle of attack did not break
down. The vortex produced at the angle of attack of 28.9° degrees broke

down above the delta wing. The Rossby number . is computed at the same

distance from the apex of the wing for both cases.

Blowing can stabilize a leading edge vortex and thus change the
breakdown criterion. Owen and Peake [43] introduced core blowing into
vortices shed from delta wings at high angles of attack to study its
effect on vortex breakdown. The symbols %n Fig. 2.2 representing these
data are variations based on a blowing coefficient parameter, Cu’ at
fixed streamwise locations z/c=3 and z/c=4, where c is the chord length
of the delta wing. Owen and Peake state that breakdown occurs
for the case C“ = 0.0, while for the cases Cp = 0.05 and Cu = 0,12 the

flow is stabilized and no breakdown occurs.

Although the data are sparse and the evaluation of the Rossby
number approximate, one may conclude that vortex breakdown for leading
edge vortices occurs at a higher Rossby numbe; than for trailing wing
tip vortices. This may be due to the fact that the swirl velocity
profiles are of a different type. Far downstream, the flow outside the
core of a trailing wing tip vortex is nearly irrotationmal. For a
leading edge vortex, the flow at the edge of the core is rotational and
nearly inviscid. In addition, the leading edge vortex contains a narrow
viscous subcore where the radial gradients of the c¢ircumferential
velocity are extremely large. In contrast, a significant region of
fluid near the center of a wing tip vortex tends to rotate like a rigid

body.
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No standing wave analyses of velocity profiles applicable to
leading edge vortices were found during this investigation. That
analysis could predict an analytic Rossby number breakdown criterion for
leading edge vortices and would bridge the two cases.” However, based on

experimental results, the critical Rossby number should be near unity.

In summary, the theoretical analyses of Squire [7], Benjamin [8]
and Ito et al. [16] have been reinterpreted to enable the identification
of a criterion that predicts the existence of axisymmetric standing
waves based on a Rossby number, AA éxponentia] representation of the
circumferential velocity profile, which most closely models experimental
flows, yields a critical Rossby number of 0.57. This value is shown as
a dashed line on Fig. 2. The experimental data of Garg and Leibovich
{19], interpreted in terms of a Rossby number, shows that the.spiral
form of breakdown occurs when the Jlocal Rossby number falls to
approximately 0.63. From the available data, the local Rossby number
was initially below 0.63 for the cases involving the bubble form of
breakdown. Numerical experiments reveal that the critical value of the
Rossby number for the bubble form of breakdown becomes independent of
Reynolds number above Reynolds numbers of 100. At lower values of the
Reynolds number, a Tlower Rossby number 1is required to initiate

breakdohn.
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NUMERICAL FORMULATION

The governing equations describing incompressible, isothermal flow

of a Newtonian fluid are given by:

Veu = 0 (3.1)

Du -1 2 -

— S m— VP v .

T > + v0 u (3.2)
subject to us=g on boundary 8. (3.3)

Here, Eqs. (3.1) and (3.2) represent the continuity equation and
the Navier-Stokes equation's respectively, each valid over a domain D.
Equétion (3.3) is a statement of specified velocity boundary condition
to be satisfied on the boundary, B, of the domain. Higher order

equa tions involving the vorticity, B, are given ‘by:

Teu =0

XU = @ (3.4)

iDT% = 270 + v @ (3.5)

Vow = 0 ' (3.6)
with g correspohding boundary condition:

w=9XxUu. (3.7)

on B.
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Equation (3.4) represents the definition of vorticity, E£q. (3.5) the
vorticity transport equation and Eq. (3;6) the solenoidal condition on
the vorticity vector. Equation (3.6) is an identity obtained by taking
the divergence of each side of £q. (3.4). The numerical scheme used to
solve these equations represents an implementation of a method described
by Gatski, Grosch and Rose [39]. The scheme is second order accurate in
time and space for the vorticity and velocity variables, and 1is
independent of the local cell Reynolds number., A major advantage of
this formulation is that boundary conditions for the pressure are not
needed to advance the solution in time. (The difficulty in specffying
the pressure boundary conditions accurately has been discussed by
Orszag, et al. [46].)

Several major aspects of this algorithm can be identified.
Equations (3.1) and (3.4) form the basis. for the solution to the
velocity vector fier when given the vorticity vector field at any time
level n, along with the velocity boundary conditions. Eqdation (3.5) is
utilized to advance the vorticity field from time level n to time level
n+l. Here, the boundary condition, Eq. (3.7), is needed to produce a
unique solution to the higher order system of equations which are
solutions to Eq. (3.1) and Eq. (3.2) subject to the boundary condition
prescribed by Eg. (3.3). The solution of Eq. (3.6) is used periodically
during the time evolution of the flow.field to ensure that the vorticity
vectof remains divergence free. That 1is, the divergence free
requirement is tested at each time level and if it fails to meet its
tolerance, Eq. (3.6) is employed.

For reference purposes, a brief description of the computational

sequence follows. The physical domain is first divided 1into a

29



computational region of rectangular cells IMAX x JMAX x KMAX. A typical
cell is sketched in Figure 3.1. Velocities, defined at the centers of
faces, are the average of box variables defined at the vertices of
cells. The numbering scheme (1-8) for the box variables is shown in
Figure 3.1. Yorticity is also defined at the center of each cell
face. The velocity and vorticity variables thus represent average
values over a cell face.

Beginning with an assumed vorticity distribution, the velocities,
utilizing Eqs. (3.1) and (3.4) are computed at time level n. The
vorticity is then advanced to level n+l using the velocities at time
level n and vorticity boundary conditions determined by the velocity
components on each boundary. This vorticity is subsequently projected
into a new vector space satisfying the reqﬁirement that the divergence
of vorticity be zero. Next, veloéities are.updated to time level n+l
using the divergence free vorticity at n . and appropriate velocity
boundary conditions. The vorticity is then recomputed at level n+l
using the updated velocity field. Repetition of the above process
yields a second order accurate solution at any subsequent time [39].

Numerically, it is required that one component of the velocity
vector be specified on each boundary cell face. All three components of

the vorticity vector are specified on each boundary cell face.
Velocity Equations

Assuming the vorticity at time level n 1is known, the velocity
components at level n can be computed through a numerical solution of
Eqs. (3.1) and (3.4) where w satisfies the compatibility condition, Eq.

(3.6). Fix and Rose [47] have shown that this compatibility condition
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Fig. 3.1 Representative computational cell showing the location of
the velocity and vorticity variables.
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is a necessary condition for the overdetermined system, Eq. (3.1) and
Zq. (3.4) to have a solution.

A finite volume approximation to theA continuity equation s
obtained by applying the divergence theorem to the integral form of the

continuity equation. That approach results in the requirement:
[9eudV = [uendo ' (3.8)

The integral on the right hand side represents the net flux of mass
into any arbitrary fixed volume. It is convenient to define an operator

Vhou , as

--1 -~
v, U= T [ uen do. (3.9)

Using the trapezoidal rule, the continuity requirement can be expressed

as
vh-u =z éiui i=1,2,3 (3.10)

(where 6. is the standard difference operator, 6 u. = (u, LYy )/ax.)
- 1 i i+t =Yy

so that vh-ﬁ = 7.0+ 0 (h9) - (3.11)

The discretize& form of the definition of vorticity results'from an
application of Stokes theorem. Consider a two-sided surface in three
dimengions having a closed surface C as its boundary. The circulation
of the velocity u around C is equal to the flux of the curl of u over S,

1.8.,

f, (7x) ondS = f. 7 dC (3.12)
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where n is a unit normal %o the surface S. We can define a second

aperator 7h X U as

- 1 -~
7 = .
p XU -TKT fcu dC (3.13)
Using the trapezoidal rule, the discrete form of the curl operator is
given as
(7, x u) = .u, = &.u, (3.14)

so that v U=9xu+0(h%) (3.15)

The preceding approximations are valid over the entiré
computational domain. Addition$1 equations are needed for boundary
5. '~ For the numerical solution, a Dirichlet condition must be
applied to any one component of velocity on all boundaries. This
condition is expressed as

g usn dS = 0 (3.16)

The numerical problem requires the solution of Eq. (3.10) on each
cell, Eq. (3.14) on each cell face, and Eq. (3.16) on all boundary cell
faces. This can be solved by an iterative scheme due to Kaczmarz
[48]. The resulting solution represents a least squares approximation
to the system Ax = F, where A is an nxm matrix and x and F are m and n
dimensional vectors respectively. When applying this scheme to the
system of equations given by Eq. (3.10) and (3.14), each equation is
relaxed independently. Therefore, n =1, and m is equal to the number
of unknowns in a cell, The scheme 1is derived in the following

paragraph.
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[f R is a residual and (k) is a counter, then we can write:

Ziﬁ(k)- Fy o= Ri(k) ang g k)L gtk ;(‘?, where v is a correction term.
(k+1) _ 3 ={k+l) . o .
Ri = Ai-u - Fi where i represents the specific equation to be
relaxed.
o (K#1) _ ¢ (a(k) . ;(k)) -F.

1

choose R. =

0= Ri(k) + Ki C(k); define AL A¥ Q(k).

Then iR, wlk) o g (K)

RIS YSING

T T

-vA, (R.A )7 Rf."’ (3.17)

a(ki-l) - a_(k) A

An acceleration parameter y has been introduced in Eq.(3.17).
Expressions for (ZKT) appear below for each of the required equations.

~1

.. - =T 1
continuity (AA ) = — (3.18)
8(1+a"+#8~) -
x vorticity (A ru ).1 = -——i—z— (3.19)
’ 4(1+x")
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.. i - 1
y=vorticity (AA ) = ;TI:;?T (3.20)
z=vorticity (R A )‘1A= ———i—?—- (3.21)
4(1l+a”)
where x = Ay/Az (3.22)
B = ax/Ay (3.23)
and ¢ = Ax/Az (3.24)
For a Dirichlet type boundary condition

- =T -1 '

(A A ) = 1/4, (3.25)

To implement the Neumann condition, du/dx =0 on a cell face, the

continuity equation can be used to write

dv/dy + dw/dz = Q. Then

-1

(X A = .25/(1+<%) (3.26)

In summary, a projection method due to Kaczmarz has been
implemented to salve the overdetermined system given by Egs. (3.1),
(3.3) and (3.4). Tanabe [49] has shown that the method will converge
for any system of linear equations with nonzero rows even if the system

is singular.
Yorticity Equations

The discretized form of the vorticity transport equation is
obtained by expressing the vorticity within a cell in terms of a set of
basis functions. These functions are integrated over time and space
resulting in expressions valid on cell faces. Appropriate combfnations

of these expressions result in the discretized form of the 'equations for
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the transport of the vorticity. This procedure is detailed by McInville
(50].

The basis set employed by Gatski, Grosch, and Rose [51] for the
two-dimensional formulation is a solution to the one ‘dimensional form of

the vorticity transport equation. These solutions are of the form

w(x,t;a) = exp [ax-B(a)t] (3.27)

where B(a) = alu - av) (3.28)

The three-dimensional form of the vorticity transport equatio%
contains the vortex stretching term wevu which requires special
consideration, The basis set no Tonger represents solutions to the
three dimensional transport equation. Thus, Gatski, Grosch and Rose
[39] employed the transformation

@=e [B”(t-t")]i (3.29)
where  is the vorticity and ¢ is a transformed yorticity. Ma trix [BnJ
is a 3x3 array which relates each component of w to the three components
of 3. When applied to the vorticity transport equation, this
transformation eliminates the vortex stretching term. The resulting

}transformed equation is
g%- + 09 = WP T (3.30)

Details of the transformation appear in Appendix A. This form of the
transport equation has solutions of the type (3.27) and is the equation

to be discretized. Note that at time level n the transformed vorticity
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equals the physical vorticity,. Hence, “true" vorticity and
“transformed" vorticity are equated at the beginning of each time step.
The discretized form of the transport equation has been derived in

Ga tski, Grosch and Rose {39]. It takes the form,

-n
{6t + [(uxu)éx + (uyv)éy + (uZW)ézJ} g

= v (5x5 + 5y5, + az?,) (3.31)
(b, =has)e=5C
(b, = h a6 E' = ayE (3.32 a,b,c)
(u, = h,q,8,) & =57

t X X X
u2=u2-h2pél (3.33 a,b,c)
t Y y "yy . ) e
wi=ui-hlpsi
t Z Z 22
where,
g 3¢ rolet
- _ 1 25 . -3
oG ag fold
- 1. ZA 3‘
[ | was— a-——k
¢ % i+ 3 i+ 3 (3.35)
ag ¢ (o]
= 1 2 ° 3
5-_62 1+3?.J+-3;k (3.36)
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o =123 (3.37)

and q(el) = coth (62) -9,
.D(Gl) = Q(el)/e1 (3.37a)
UpdXy |
el iy vl 1=1,2,3 (3.38)

The finite difference operators & and u are defined as follows.

n n

S - S
- . ._1 .
R A 1L 2723, (3.39)
X I»Jnk AXx
n S:+j1/2k - S?-jl/zk
= » ] » » /
5, S -y = (3.40)
n n
S + S
. 1 . ._l .
n 1+ /2 .J.k 1 /2 »ka
= .4
uxsi,j,k 5 (3.41)
-1
n S?;kl/2+ Sri‘jk/z
= .4
utsi,j,k 5 (3.42)

The algorithm governing- the time advance of vorticity from time
level n to level n+l utilizes the vorticity at time level n+ Y which is

given by

Byt - t)
n+ Y5 _ o n+ 15 z N+ Iz,

[ ]

(3.43)

By definition

n+ 1p

fall

= (ut + rét)z n (3.44)
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Thus .
tn)

. Bn(t .l
srtene Tele Tz

(3.45)

Now consider the vorticity at time level n+li centered around level

n+l,

VS SR NS R A )z b

(3.46)

By definition

- 1 -

M2 (u- s ™ (3.47)

t t

e rly Cnel'fher” Tae s

- -n

w 2. e z(pt~ r'ét)C (3.48)

By equating Egs. (3.45) and (3.48) the condition that the vorticity at
time level n+-yé be continuous is imposed. This results in a relation-
ship between the vorticity at time level n+l and level n. This

condition is given as:

( 5 ) - n+l Bn+11[‘ Bnt( 5 ) - n] (3

- - = + "
| “t T . C e e “t T . o .49)
where TRt tw*%@ (3.50)
and t = t”*%@- t, : | (3.51)

Equation (3.49) governs the advance of vorticity from time level n
to level n+l. If it is assumed that the vorticity field is known at
time level n, then the right hand side of Eq. (3.49) can be calculated
explicitly. The time average on the right hand side is eXpanded by

using Egs. (3.33 a,b,c). The time difference is expanded by using the
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transport equation ( Eg. (3.31))., These expansions remove the n+ ljp
time level from the right hand side of Eq. (3.49). The expanded forms
of Eq. (3.49) using Eq. (3.31) and Eq. (3.33a) (3.33b) or (3.33¢c)

respectively, become:

B t°B t
- + - - - -
(u-r’é)cnl enlen[uCn-tfuuécn+uvécn+uwécn]
X X X y oy z 2
- - = 2 - n
+ve{d o +86 G+8E) -h pdb&o ] (3.52)
X y b4 X X X
- n+l Bn+lr‘ Bnt -n -n -n -n
(u-ré)c = e e (g - <(pus ¢ +uvdC +puwhil
t y X x y y z oz
" - - 2 -n
+ve(s, o+ 8 v+ 8 E)-h p b Y] (3.53)
(p,=7"3 )C eBer‘e nr[ et [pus B + uvs T + uws 2]
He H, B HyVOy H2¥9,
s vt (5 9+6 946 B - poE™ (3.54)
x ® y z z P2°%2 : :

The only unknowns on the right hand side in these equations are the

diffusion terms éxs. ay&. and GZE. Explicit expressions for these
terms are obtained from a set of equations, derived from the identity
- - l - -l .
G n /2‘ By C tC ¥ where 2 is known from the previous time

step. This identity is expanded using E£q. (3.31) and Egs. (3.33 a,b,c).

The three resulting sets of equations become

-N=- 1/2

o =, C +-r(p. u6 7 +p.yv6 & +u wé C )= (h p +v1)d ¢-v1:<5y¢»-v16 Z (3.55)
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=n-

1l - - - - - -
z /2= " Cn-l-':(p. ué Cnﬂ; vé Cn+u wé Cn)-vré ¢-(h2p +vt)8 d~vrd & (3.56)
y X X y vy z z X yy y z

R pz_fc"n(uxuéx2"+uyvay"c"+uzw§z'c”)-wax wvréyl-(hipzw-t)éz-é (3.57)
Note that the i component of the above equations represents one "set,”
consisting of 3 scalar equations with unknowns 6x¢1, 6y¢1 and 6251.
Similarly for the j and k components.

The detai1s-of the solution of these equations for éxa. 6yl, 625
by utilizing Eqs. (3.32 a,b,c), appears in Appendix B. The advance to
time level n+l is implicit. Equations (3.52), (3.53) and (3.54) are
reduced to a tridiagonal system which can be solved using either
alternating direction implicit (ADI) or successive over relaxation (SOR)
methods. The reduction of the equations to tridiagonal form has been
developed in Appendix B.

To implement an ADI solution, a Thomas algorithm [S2] is first
applied along each line of constant jk for the x direction sweep. This
gives the three components of vorticity at the centers of the x=constant
cell faces. Explicit in this sweep are the three components of
vorticity occurring on the y=constant and the z=constant faces. For the
first iteration through x direction sweeps, the values of the vorticity
components are at time level n. The Thomas algorithm is then applied in
the y direction and z direction, resulting in the updated components of
vorticity on the y=constant and z=constant faces respectively. In
general, it is found that sufficient refinement of the solution is

achieved by cycling through each sweep direction three times.
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Recall that the velocity coefficients of the advection terms are
lagged by one time level during these cycles. To achieve second order
accuracy in time it 1is necessary to update these velocities to the
current time level of the vorticity, and then recompute the vorticity
using these updated velocities. [t is also necessary to recompute the
right hand side of £q. (3.49) after recycling through the velocity
equations and before recomputing the vorticity, This requirement
results from the fact that the n+l time level of the exponential
transformation appears in Eq. (3.49), Repeated application of the abové
procedure yields in the vorticity and velocity fields at later times.

Alternately, the implicit system may be solved using a SOR type
it

~ or e S taad
e = ASTRL ST 1o wCua g

of vian
The advantage of this approach is that when only a few cycles are
required, the SOR iteration will be faster computationally. In
addition, a residual can be identified and used as a criterion for
convergence. The residual is defined as the difference between the left
side and right side of each individual equation of the tridiagonal
system. The other aspects of the solution procedure are identical with
the method employing the Thomas algorithm, In all the subsequent

computations, the time steps were kept small enough to ensure that the

CFL stability criterion [53] was not violated.
Helmholtz Projection

In general, the vorticity resulting from the finite difference
solution to the vorticity transport equations does not satisfy the
requirement that the vorticity vector be divergence free. This is due

to the fact that the divergence free condition is a vector identity and
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is not part of the Navier-Stokes equations. Hence, the divergence free
condition is not required in the derivation of the vorticity transport
equation. Thus, an initially divergence free field may drift from the
requirement due to roundoff error or discretization error.

A previously discussed requirement for the numerical solution of
the velocity field was the compatibility condition V‘:FO. [f the vector .
resulting from the time advance of the transport equation does not
satisfy this condition, it must be projected onto the vector space of
divergence free vorticity. A well known property of any vector field is
the fact that it can be decomposed into an irrotational field and a

divergence free field according to the Helmholtz projection:

w = Tx + 7 xc (3.58)

irrotational divergence free
Here, x represents a scalar function and ¢ , a vector function. To
extract the divergence free part of the vector, B, take the divergence

of Eq. (3.58) to get:

Tow = Py T (3.59)

Equation (3.61) can be used to solve for x , subject to the boundary
condition %% = 0 on B. This boundary condition is utilized to ensure
that the component of vorticity normal to the boundary is not altered.
The divergence free component, 7 x ¢, of the original vector, @, is

given by

Y
>
Ol
"
£
'
Ql
>

(3.60)
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An alternate approach to enforcing the solenoidal condition on the
vorticity vector can also be derived. Equation (3.59) can be reduced to

the following set of first order differential equations:

%%*%3*2—;= 7o (3.61)
p = %% (3.62)
q =% | (3.63)
r ,%72(_ (3.64)
where %% = 0 on the boundary. The unknowns in this system are thé

"scalar quantities p, q, r and x. The divergence free components of the

original vector are then given by:

(v x 'c)1 =w =P (3.65)
(v x 'c)‘2 = w - q (3.66)
(v x 2)3 w =T, (3.67)

The discretization of equations (3.61) to (3.64) is described by

Rose [54]. The finite difference forms are:

5P *+ 560+ 65 = Vew (3.68)
b = éxx (3.69)
p.yq = 5yx (3.70)
= 6,% (3.71)
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Ax 3 by
wX = g 6xp = B X 2 <5yq (3.72)

2 2

_ Ax Y
BX = =g 5xp T ézr (3.73)

The averaging and difference operators are identical to those defined
previously for the discretization of the transport equation.

These equations have been solved using the Kaczmarz [48] iteration
scheme which was discussed in reference to the solution of the velocity
field. Recall that the Kaczmarz scheme reqﬁires the evaluation of the
expression K?(Riig)-lRi for each of the discretized -equations, the
subscript i denoting a specific equation. The expressions for Ki and

ow for Egs. (3.68) to (3.71) as tEgs. (3.74 a,b) to (3.80

o - P O |
Ry @€ given uei

a,b) respectively,

Nl o e 2 ) (3.74a)

~
"

1 - 1 -
1 3% Pisly Pi-lp ) * 3y Qyaty ™ 95-1)

1

+E (rk+ ]7/2- rk_ 1/2) - (V'U)i’j’k (3.74b)
11 -1 1
AZ (E’ 3 X Xx-) (3.75a)
R, a2 (p 1, + P, 1) o= (X1, = Xe 1) (3.75b)
2 2 Tl Ticly T el M-y

1 1 -1 1
A3 = (E, E,' ry-, ry-) (3.76a)
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_ 1 ! -
11 -1 1 ‘

2 (e, o - ) { 77 \
A4 (2’ 2° az’ az’ (3.77a)
R, =% (r,. 1, +r 1, ) =L - w L) (3.77b)
4 "7 kel kB! T Ve Uy T K- Ly :

(L1 1 1 -a&x &x &y -4y
AS (2’ 2) 2: 2’ 8-: 8—'3 '8—') T) (3-783)

AX A
N (p1'+ 1/2- pi-l/g) * ‘%— (qi+ 1/2- ;- 1/2) (3.780)

As (Ea '2'9 '2': Ea E"; E"s ‘8—5 8—) (3.793)
R6 Z (XH- 1/2 Xj- 1/2 ) 3 (Xk+ 1/2 ¥ Xk- 1/2)

; A2 i
- (°i+1/2 pi-llz) * = rey Yy~ k- 1,2) (3.79b)
Each of the above equations is relaxed independently over all interior

and boundary cells using the Kaczmarz iteration scheme repeated below.

T _T

-1
= (k+1) _ = (K) _ _ 2 = (k) '
2 = Y A (AiAi) R, (3.80)
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The vector n is composed of combinations of the variables p,q,r, and
¥ depending on the equation being relaxed. For instance, when i=l,

which corresponds to Eq. (3.68) the vector =, is given by

alt

1 = (p]+ 1/29 p1- 1’2’ qJ+ 1/21 qJ' 1/2; rk"' 1/2. rk‘ 1/2 ,) (3.81)

The boundary conditions are handled in a similar manner., It is
required that the normal component of vorticity on a boundary remain

unchanged after the Helmholtz projection. Thus, on constant x boundary

faces %% = 0, on constant y boundary faces, g% = 0, and on constant z
boundafy face, 9% = 0. Hence, the boundary conditions are
p=20 on i=1, and imax (3.82)
q=20 on j=1, and jmax (3.83)
r=20 on k=1, amd kmax (3.84)

These values are reset after each iteration through the Xaczmarz update,
since in general, the boundary values of p,q and r change after the
relaxation of Egs. (3.68) to (3.73).

' An alternate method, mentioned initially, is to’splve the Poisson
equation for x, and then compute Vx. This can be done using an SOR
iteration scheme. The divergence of vor;icity is given at the center of
a cell, so that x should be computed at cell centers while Vx should be

computed at cell faces, To facilitate coding, it is desirable to

express the Poisson equation in terms of the orthogonal, curvilinear

coordinates
x =x (&)
y =y (n)
z =2z (g)
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The transformed Poisson equation takes the form

=4

3
. 2 2 _ 2 u&
°x ez y Ymn z Yz x 32 ©

bwz aw3
ﬂy*aj]—"' Cz‘a?- (3.88)

where
0<g<l, 0<n<l, 0<g<l
The computational plane consists of rectangular cells with uniform
spacing in each coordinate direction. This allows one to use simple
unweighted finite difference expressions, Equation (3.85) s
discretized using central differences for both first and second order
_derivatives. The discretized form can be solved using an SOR scheme

for the variable x . It is then necessary to compute Vx as follows.’

Iy = § (3.86)

010'
el Pl
-4 )
+
3
010
=1 P
[ SR
+
a)
~N

(ylo
a1 P
~

In the discretized form, the first order derivatives are represented by
central differences., On boundaries, 3x/dn =0, so Eq. (3.86) is

computed for interior cells only, If the divergence free components are

represented by "'", then
w'l = w - A/ dx . : (3.87)
w', = w, > dx/dy ) (3.87b)
w'3 = wy = dx/dz (3.87¢)

Pressure Equations

One advantage of the vorticity-velocity formulation is that the
pressure does not appear explicitly in the equations of motion.

Therefore, the velocity and vorticity are obtained independent from the
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pressure field. In Appendix C, it is shown that pressure satisfies a
Poisson equation, whose right hand or function side is an expression
containing the velocity gradients. The numerical solution of this.
equation 1is analagous to the solution of the Poisson equation, Eq.
(3.59).

Neumann conditions, resulting from the momentum equations, were
specified on all boundaries. A special requirement of these boundary
conditions, due to an application of Green's theorem, 1is discussed
below.

The integral form of the Poisson equation for pressure can be

developed from the momentum equations and written as:
[ PP av = | sdv | (3.88)

where the source term S is given as

[bv ou . 3w du dwdv _du dv _ dudw _ dv aw]

S=-2 l3xsy*3xaz "oz X3y  x 3z 3y az

(3.89)

Through an application of Green's theorem, a relationship between the
source term and the boundary flux is given as:

_ ;2P
[ Sdv = fﬁ da (3.90)

Here, n is taken as positive when directed outward from the boundary
d. In general, the finite difference equivalent of Eq. (3.90) will not
be satisfied identically. As a result, the numerical solution of the
Poisson equation for pressure need not converge.

A convergence requirement can be developed for the Poisson equation

by imposing an error condition, £, defined as

£ = [ Sdv - f%f? 30 (3.91)
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The strategy is to distribute this error over the boundary flux terms
aP/2n, which represent the boundary conditions. In this sense, the

finite difference analog of Eq. (3.90) is satisfied.
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SPECIFICATION OF THE PROBLEM -
BOUNDARY CONDITIONS

Mathematicaﬂy, the Navier-Stokes equations are a set of three
elliptic, second order partial differential equations., This means that
either a Dirichlet or Neumann condition must be specified on all closed
boundaries. It is these boundary conditions that distinguish all the
different flow patterns occurring in nature. Therefore, it is extremely
important that these conditions be chosen properly.

The purpose of the present study was to model the evolution of a
class of vortices similar to those shed from the wing tips of
aircraft., Although these vortices generally occur in pairs, only a
single vortex was considered. (QObservations reveal that these vortices
are roughly axisymmetric with an appreciable axial velocity (either a
defect or an excess velocity relative to the free stream, depending on
the wing loading [55]). In.addition, far downstream of the wing the
flow out'side of the core is nearly irrotational,

Experimental measurements of a trai'ling_ wing tip vortex [42] and
vortices produced' in a tube and vane apparatus [27] revealed that the
circumferentia] velocity profile 1is well represented by the two-
dimensional Burgers vortex. The axial velocity appears-vto décay
exponentially in the radial direction (from the vortex centerline),
reaching a constant value at large radius. These observations can be
represented by the following dimensional form for the swirl and axial
velocity profiles.
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-ar

v = (KIr)(1e 2v | (4.1)
2
-ar

u=U +Ue 2v . (4.2)

Here, K is a constant, which is proportional to the circulation, "a" is
an adjustable constant associated with the vortex core diameter and v is
the kinematic viscosity. u_ is the free stream axial velocity and Ug is
an axial velocity excess (or deficit) occurring at the vortex center-
line. Profiles similar to these were employed in numerical studies of
vortex breakdown by Kopecky and Torrance [31] and Benay [35].

In the above equations, length was nondimensionalized by r~”, where

r° = /2v/a (4.3)

and velocities were nondimensionalized by the axial velocity, U*,
occurring at the radius of maximum swirl velocity, r. Formally, the
quantity r”is the distance in which the axial vorticity e-folds once.
In fact, the radius of maximum swirl velocity-is nearly equal to r*.
Through an Jiterative process one obtains the relation

*
r =1.,12r" (4.4)

The nondimensional forms of Egs. (4.1) and (4.2) become

2
1 1 -r
Ve -m; (l-e ) (4.5)
- -r
u = 1+ % - (4.6)
1+ 0.2856
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variable form of the Navier-Stokes equations, Eq. (3.2).

solution of the vorticity transport equation, Eq.

. * k4 -
where the Rossby number is given as Ro = U /r Qand 6§ = UO/U@° Here,

2 is defined as the solid body rotation rate obtained from

Q = 117“ (V./r') = aK/Z\J. (4.7)
r+0

The axial component of vorticity, for the velocity distribution given by

Eqs. (4.1) and (4.2), is given as

-arz
_ak oV
W --V—e

x . (4.8)

By defining Q as the reference vorticity, the above equation can be

written in nondimensional form as
-r
w = 2 e (4.9)

The circumferential vorticity component is given as

~ar2
= ar 2V
wg =< er (4.10)
which in nondimensional form becomes:
- 2
.24 -
0, 2285 po re " (4.11)

1.0 + 0.2856

These expressions represent the form of the vortex employed in the
presént study from which the initial and boundary conditions were
derived. The initial and boundary conditions at inflow are discussed
first. fo]1o§ed by the outflow conditions and conditions at large
radius.

The specification of the velocity vector, Eq. (3.3), or its

gradient on all closed boundarijes is required to solve the primitive

The numerical

(3.5), requires the

53



specification of three components of vorticity on the boundaries. The
numerical solution of the "velocity equations", €gs. (3.1) and (3.4),
requires the specification of a single component of the velocity vector
(or gradient) on the boundaries, The general procedure is to specify
the primitive variables on a boundary and translate this specification
to a finite difference form consistent with the above requirements of
the algorithm,

Although quasi-cylindrical vortices are best described 1in a
cylindrical coordinate system, the algorithm, as constructed at this
point, was written in terms of Cartesian coordinates. Therefore,
references to both coordinate systems are required in order to interpret
the influence of the boundary conditions on the solution, In the
following discussion it is assumed that the initial vortical
distribution was cylindrical (i.e., no variations in the axial direction
and no radial velocities). The vortex was aligned along the x axis and
the rotation was such that the axial component of vorticity was
positive.

At inflow, the specified primitive variables were: the axial
velocity component, u, the y deriva tive of.the w, and the z derivative
of the v components of velocity, (i. e. u, %;—. %)’ These conditions
must be interpreted with respect to the algorithm. The axial velocity
component, u, was held fixed at inflow when solving the “velocity
equations." This allowed for direct specification of wake-like or jet-
like profiles. The v and w components of velocity were specified to the
extent that they took on the values determined by the component of
vorticity normal to the inflow boundary. This led to the specification

of dw/dy and dv/dz as the additional primitive variable boundary
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conditions, since these derivatives can be combined to give the axial
component of vorticity. Note further that the axial component of
vorticity can be oriented in the same direction in both cylindrical and
Cartesian coordinate systems. Therefore, the specification of w, in the
Cartesian coordinate system (of the algorithm) can be interpreted as
specifying the vorticity distribution of Burgers' vortex, since 3w/dy
and dv/dz were obtained analytically from Eq. (4.5).

The "vorticity solver" required the specification of two additional
bodndary conditions. These were chosen as u& and w_.

z
In nondimensional form, u& and w, can be written:

= U

w, = 1.12 Ro (az ox (4.12)
- v _ A

w, = 1.12 R (3; 3y (4.13)

Since u is an analytic boundary condition at inflow, the derivatives
du/dz and du/dy were known. [t was necessary to calculéte the deriv-
atives 3aw/dx and dv/3dx numerically since they could not be derived from
the analytic boundary conditions. First order forward differences were
used to compute these derivativest The resulting boundary conditions
were assumed to be at time level n (present time).

A different strategy had to be used to specify the outflow boundary
conditions since the solution here was unknown and highly dependent on

the flow upstream. With respect to the "velocity solver", the condition

dv/dy + dw/dz = constant (4.14)

was chosen. This is a statement regarding the divergence of the

velocity in the plane perpendicular to the vortex axis. The constant
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equals zero for a steady flow in the 1limit as the Rossby number
approaches zero [40].

Flux conditions were chosen for the vorticity boundary conditions
at outflow. Here, the effects of viscosity were neglected and the
Dirichlet type boundary conditions were obtained assuming a time advance

of

% = VL. (4.15)

The velocities and vorticities on the right hand side. of £q. (4.15) were
taken at time level n., The time derivative was discretized using first
order forward differences. The resulting discretized equation was theﬁ
solved for the vorticity vector at time level n+l,

At the large radius'boundaries given by planes of constant j and k,
the axial component of velocity was specified. This was done so that
the effects of an external pressure gradient, analagous to the
experimental investigations, could be modeled.

At these boundaries the three components of vorticity were
specified using the Cartesian coordinate equivalents of Eqs. (4.9) and
(4.11). For a wuniform inflow profile, Eq. (4.11) shows the wy and
w, components of vorticity are zero. B8y evaluating Eq. (4.11) at large
radius, one can see that the axial component approaches zero asymptot-
ically. Therefore, the radial boundaries were placed at a radius which
was large enough to ensure that vorticity did not, through convection'or
diffusion, qontaminate the boundary conditions.

To summarize, the specification of the boundary conditions for both
the "velocity solver" and the ‘“vorticity solver" are represented in

Table 4.1,
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Table 4.1

Summary of Velocity and Vorticity Boundary Conditions

Yelocity Solver

Surface Specification
(a) inflow u=given
(b) outflow av/dy + dw/az = Q
(¢) . radial boundaries u=given,

Yorticity Solver

Surface Specification
. 2
(a) 1inflow w =2e "
w = 1.12 Ro (du/dz - 3w/dx)
w, = 1.12 éo (d3v/dx - du/dy)
(b)  outflow g—‘: = U
(¢) radial boundaries w = given
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The discretized form of the governing equations were solved over a
48x28x28 grid (47 cells in the x-direction, 27 cells in the y-direction,
27 cells in the z-direction) on a Cyber 205. Course grid (52x20x20)
solutions were computed on a CDC 830 at 01d Dominion Unijversity to help
identify relevant parameter ranges. Since the difference scheme is
compact, grid clustering is easily performed. Grid points are usually
clustered in regions where large gradients occur. In studies of vortex
breakdown, this includes the region immediately upstream of the
breakdown and the vortex core region. [mmediately wupstream of
breakdown, large gradients of the axial velocity occur as the fluid
approaches the stagnation point., Large gradients of the circumferential
velocity are present within the core.

Reéinement of the mesh in the axial direction was accomplished

using the transformation:

x=1
h (a°-1) [(S}%) - 1]
X = - (4.16)
o1 X1
(o+1) () 1]

where B is a stretching parameter and Ex is the length of the domain in
the x direction. More points are clustered near x=0 as o+l, l<o<w=,
The coordinate x variég uniformly from O (corresponding to the x=0 grid _
point) to 1 (cbrresponding to the x=ﬁx grid point).

To cluster point§ near the vortex centerline (y and z coordinates)

the following transformation was used:

sinh(e(y-8)1]
sinh (eB)

yay {1+ b (4.17)
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where

e -
1+ (e -l)(yc/hy)

B = an [

] N¢etn
j» U<eg

—
>
.
-
Qo
~

L
e Dy R )
c vy
and £ is a stretching parameter, Incréasing e clusters more points near
Y=Y.- If €=0, a uniformly spaced grid results. The domain length is
given by ﬁy. The coordinate y varies uniformly from 0 (corresponding to
the y=0.0 gridpoint) to 1 (corresponding to the y=ﬁy gridpoint).
The above transformations can be found in Anderson, Tannehill and

Pletcher [52]. The values of the grid parameters for the solutions

generated in this work were given as:

hx = 16.0, o = 1.15 x direction grid
Yo = 5.0, ﬁy = 10.0, € = 4.5 y direction gr%d
z, = 5.0, Fz = 10.0, € = 4.5 z direction grid

These resulted in the following minimum cell lengths:

ax = 0,1303
Ay = 0.1778
Az = 0,1778.

The distribution of the cells within the domain and the orientation

of a typical vortex is shown in Fig, 4.1.
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RESULTS AND DISCUSSION
Results of two test cases are presented. In the first case,
(Ro=0.625, Re=225), the vortex was imbedded in a uniform external flow

with no external pressure gradient. The flow produced by this Rossby,

Reynolds number case, along with numerous other cases, predicted an

axisymmetric breakdown which occurred at the inflow boundary. That

result was similar to the results obtained by previous
£31,33,35,36].

investigators

The questions which arise from breakdown near inflow

have been discussed earlier in this work. I[n order to alleviate this

problem, a different type flow was computed, (Ro=0.8, Re=225), in which

the vortex was imbedded in a decelerating free stream. This, 1in

essence, modeled the effects of an adverse pressure gradient on the

streamwise development of the vortex. The resulting breakdown occurred

away from the inflow boundary. In addition, a multiple celled breakdown

region was observed, in accord with experimental observations [27]. In

both cases, the parameter, &, defined in Eq. (4.6), equaled 0.0. Thus,

a uniform axial velocity profile was specified at inflow. In the

following discussion, detailed results of the above two test cases are

displayed in the form of line and contour plots. Several other test

cases that were run without graphic output are discussed. Finally, the
results of tests performed to ascertain the effects of domain length and

grid size on the temporal evolution of the solution are discussed.
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Case 1 - Uniform Free Stream Axial Yelocity

‘Based on previous numerical studies, breakdown of trailing wing tip

vortices occurred at Rossby numbers of approximately 0.6 or less when

the Reynolds number was greater than 100, This behavior 1is shown

clearly in Fig. 2.1. The initial numerical simulation in the present
study was completed in an attempt to verify these results and to

determine the effects of asymmetries on the solution. The test was

performed at a Rossby number of 0.625, which was chosen because it was
near the delimiting line for vortex breakdown displayed in'Fig. 2.1,
Flows computed by previous investigators at Rossby numbers considerably

below the delimiting line in Fig. 2.1 appear to become distorted and

non-physical near the inflow boundary. A Reynolds number of 225 was

chosen to minimize the apparent damping effects of viscosity at very low

Reynolds numbers. The results of this simulation are displayed in Figs.

5.1 to 5.15 for the time level t=126,.8., Unless otherwise noted, the

contour plots are in the x-y plane along the centerline of the vortex.
Solid contour lines denote positive values (or_zero) and dashed lines
denote contours wfth negative values.. In 211 plots, the contour levels
are evenly spaced. Plots of particle traces, vortex lines and velocity
vectors are also displayed. They were obtained using PLOT3D, a three-
dimensional color graphics program implemented on an Iris color graphics
workstation, These plots are projections of three-dimensional vector
fields onto a two-dimensional surface.

Velocity vectors, projected onto the mid plane (z=5), are displayed
in Fig. 5.1. Observe that the internal structure of the breakdown
region is seen to consist of a single cell, nearly symmetric about the

vortex centerliine. Fluid is entrained through the top half of the rear
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of the breakdown region. The fluid appears to exit the bubble from the
Jower half. In addition, two stagnation points along the axis can be
distinguished.

Figure 5.2 .represents particle traces. Nine white colored traces
were started at the inf]oﬁ plane. These traces were all started from a
radial position within the‘rotational portion of the core. In addition,
a trace was started within the breakdown region itself, and is
represented by the red line. A third trace was started at the inflow
plane but outside the core in the irrotational region of the flow. That
trace is blue. Particle traces satisfy the equations ax/3t=u(x,t). If
a particle passes through the point {(x,y,z) at time t=0 the solution is
of the form x=x(x,y,z,t) which traces out the pathline as t increases.
The PLOT3D graphics package is limited to instantaneous particle traces,
i.e., the velocity components must be time independent. Therefore, in
this sense, the traces can be considered as streamlines, pathlines or
streaklines because in a steady flow they all coincide. The tangents to
these traces are everywhere parallel to the velocity vector,

The white traces shown in Fig. 5.2 can Dbe seen to approach the
breakdown region and diverge = never entering thé cell itself. These
traces also reveal that the diameter of the vortex core has increased
behind the breakdown reéion. The red trace, released from within the
bubble, is seen to spiral about within a single cell, It eventually
exits the region from behind, closer to the axis radius than the white
traces. The blue trace spirals around the qutside of the vortex core in
the irrotational region and is essentially unaffected by the breakdown.

Contours of the axial velocity are displayed in Fig, 5.3. This

plot clearly reveals a breakdown region which occurs in close proximity
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to the inflow boundary. The recirculation region is bounded by the area
within the innermbst solid contour line (the 0.0 level contour). The
breakdown bubble appears symmetric abodt_the vortax centerline.

Figure 5.4 represents the 0 (axial) component of vorticity. For
this figure and all succeeding vorticity~contour figures (including Wy s
and w, contours), the vorticity has been scaled by the Rossby number.
For example, w, = 1.12 Ro(dw/dy=3v/dz). An interesting feature of this
flow 1is the intensification of the axial component of vorticity
occurring just aft of the breakdown region. Here, the axial vorticity
has increased by approximately 25% over the maximum value at inflow.
This is due to vortex stretching which results from a rapid acceleration
of the axial velocity component. Within the breakdown region itself,
the axial component of vorticity is small. This indicates that within
the breakdown region the radial gradients of the circumferential
velocities are small, Downstream of the breakdown region the contour
lines become parallel, revealing a return to a quasi-cylindrical flow.
In the absence of breakdown, the vorticity contour lines over the entire
region would appear nearly parallel, .

Contours of wy and w, vorticity are displayed in Figs. 5.5 and 5.6,
respectively. The 0.0 level contours are not displayed, because outside
the core of the vortex, large regions exist where the vorticity field is
near zero. Therefore, plotting zero level contours results in a large
number of undesirable and confusing lines in the far field. The plot
represented by Fig. 5.5 is in the x-z plane sinﬁe the w component of
vorticity in the x-y plane is nearly zero. The w& and W, components are
due entirely to perturbations of the base flow since the initial (t=0)

distribution possessed only an axial component of vorticity.
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Fig. 5.3 Contours of constant axial velocity., Contour levels range
from -0.1 (dashed) to 0.9 in intervals of 0.1l.

Fig. 5.4 Contours of constant axial vorticity, w . Contour levels
range from 0.25 to 2.5 in intervals of 0.2S.
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Fig. 5.5 Contours of constant w vorticity. Contour levels range from
-1.25 to 1.25 in intervals of 0.25.

Fig. 5.6 Contours of constant w, vorticity. Contour levels range from
-1.25 to 1.25 in intervals of 0.25.
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Vortex lines are shown in fig. 5.7. These are lines whose tangent
is everywhere parallel to the vorticity vector. The lines are three-
dimensional and were obtained using the Iris color graphics work-station
and PLOT3D. As was the case with the particle traces, the vortex lines
must be considered to be time independent. The radial locations of the
lines at the inflow plane correspond to the radial locations of the
white particle traces in Fig. 5.2. Note that the magnitude of the
vorticity cannot be inferred from these lines. At inflow, the lines are
oriented in the x direction, revealing that only the axial component of
vorticity exists. Upon entering the breakdown region the lines become
oriented nearly perpendicular to the vortex axis. This signifies a
transfer o; vorticity to the w, and w, camponents, and is controlled
by the vortex stretching and bending terms in the vorticity transport
equation, Aft of the breakdown region, the vortex lines are oriented
primarily in the axial direction, indicating a transfer of vorticity
back to the axial component.

Figure 5.8 is a line plot of the integral [ i 4V as a function
of axial location, where 52/2 is defined as the enstrophy. The
integration was carried out over control volumes defined by 0<y<10,
0<z<10, Ax. Thé resulting numerical values weré then divided by the
volume over which the integration was performed. When the enstrophy is

integrated over a volume of fluid it is an appropriate measure of the
total amount of vorticity within the fluid [40]. The enstrophy is
maximum within the breakdown region at the axial location x=3. The
enstrophy decreases and remains nearly constant downstream of the

bubble.
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Figure 5.9 is a Tine plot of the volume integral of the material
derivative of enstrophy as a function of axial location. The integral
is given as %? f % Bzdv which provides a measure of the rate of change
of the total amount of vorticity in a specific volume of fluid, V.
Here, V 1is enclosed by a surface 8 moving with the fluid. The plot
displays axial variation of total enstrophy, along with the rate of
change provided by stretching, viscosity and the flux of enstrophy
across the boundaries of the control volume. The meaning of these terms
can be explained by expanding the time rate of change of enstrophy

integral in terms of volume integrals containing Eulerian derivatives.

The result, derived in Appendix 0, can be written as:

i3 f? m].w].dV = | Wil -a-%- dv = vf (3%-) dv + 3V J axj nJ. ds (5.1)

By examining the right hand side of Eq. (5.1) it can be seen that the
total amount of vorticity in a material volume can change as a result of
vortex stretching and viscous effects. The first term on the right, the
stretching term, is positive if the fluid element is extended in the
direction of the local vortex lines. The second term reveals that the
effect of viscosity, neglecting diffusive transport across the
boundaries, is to decrease the total enstrophy of the' fluid. In
gehera1, it is possible for the entire right hand side of Eq. (5.1) to
be positive, leading to an increase in the enstrophy, or total amount of
vorticity, in the fluid.

The volume integrals on the right-hand side of Eq. (5.1), which are
plofted in Fig. 5.9, were evaluated using trapezoidal rule integra-

tion. The integrations were performed over volumes defined by
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O<y<10, 0<z<10, ax. The plotted values represent volume averages, i.e.,
the numerical values resulting from the trapezoidal rule integration
were divided by the volume over which the integration was performed.
From a lagrangian point of view the rate of change of enstrophy of a
material volume is due to both temporal changes and changes due to
spatial movement of the volume. In a steady flow, the temporal changes
are non-existent, Since the breakdown is an unsteady phenomena,
temporal changes my be significant although it is unlikely that they
are dominant. Whenever the rate of change of enstrophy is negative, the
total amount of vorticity contained in a material volume passing through
that location is decreasing. By examining Fig. 5.9 it is apparent that
the distribution of enstrophy within the fluid is controlled, for the
most part, by vortex stretching. Viscous éffects appear to be important
only within the breakdown region. The diffusion of enstrophy into, or
out of, a material volume is negligible. The maximum and minimum values
of the total rate of change of enstrophy occur at axial locations
corresponding to the stagnation points. These points approximately
define the front and rear of the bubble,

A contour of the pressure field, non-dimensionalized by pU*,Z is
shown in Fig. 5.10. Beginning at the inflow boundary and near the
centerline, the fluid encounters an adverse pressure gradient with a
corresponding decrease in the axial velocity. ' Within the breakdown
region itself, the pressure remains nearly constant. The fluid is
accelerated beyond the breakdown region, and this is manifest in the
form of a weak favorable pressure gradient. Downstream, the pressure

contours are nearly parallel. Since the vortex was imbedded in a free
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stream with a constant axial velocity, the pressure along the radial
boundaries is nearly constant.

The relationship between the centerline axial velocity and the
centerline pressure is shown in Fig. S.11. Except for a short distance
within the breakdown region, increasing axial velocities correspond to-
favorable pressure gradients and vice versa,

Figure 5.12 is a contour plot of the dimensionless total pressure,
q2/2 + p. In a steady inviscid flow, q2/2 + p remains constant along a
streamline. Therefore, the above contours can be thouéht of as
approximating streamlines. Along a streamline, wherever the dynamic
pressure (q2/2) is high, the static pressure (p) is low and vice versa.

The rate of change of energy is plotted in Fig. 5.13., The rate of
change of total energy is given as the sum of the rates of change of
internal and kinetic energy. The rate of change of kinetic energy is
given as the sum of the rates of change due to both pressure and viscous
forces. For an isothermal, incompressible fluid 1in a Lagrangian
framework, the rate.of change of total energy of a specific material

volume is given as: g

2

d f(E+1az)dv=-fﬁ-a-g—dv+vfu‘—a-—u-i-dV+avfe e..av  (5.2)
dt 2 o Bx, i 3X 3X 5 ijoij .

The interpretation of the above material derijvative is analagous to the
interpretation given earlier for the enstrophy equation. The rate of
change of internal energy is due solely to the dissipation of mechanical
energy through viscous effects. Here, -.1_:he shape of the fluid element is
distorted. This is an irreversible Ioss_ of energy, manifested in the

form of heat. This is accounted for the third term on the right hand
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Fig. 5.10. Isobar plots: contour levels varying from -0.9 to 0.l in
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Fig. 5.12 Contours of total pressure: contour levels of -0.5 to 0.7
in intervals of 0.1.
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side of Eq. (5.2). The effect of the first and second terms (pressure
and viscous stresses, respectively) is to change the kinetic energy of a
fluid element. The pressure forces are reversible changes in energy.

The kinetic energy per unit volume is plotted as a function of
axial distance in.Fig. 5.14. Following a slight decrease near inflow,
kinetic energy remained constant in the axial direction.

Fiqures 5.15 a-d represent velocity profiles at four different
axial iocations. Axial (x), transverse (y) and spanwise (z) velocities
are plotted as a function of the transverse coordinate (with a
translation of the origin to the vortex centerline; y=5.0, z=5.0).
Since the spanwise location of the data points was along the vortex
centerline, the velocity components in a Cartesian system can be
transformed easily to the corresponding components in a cylindrical
system, The axial location of the profiles in Fig. 5.15a is slightly
upstream of breakdown (x=0.27). Figure 5.15b represents profiles from
within the breakdown region (x=2.52). Figure 5.15¢c represents profiles
near the aft stagnation point (x=3.85). The profiles plotted in Fig.
5.15d are at an axial Tlocation downstream of the breakdown region
(x=9,52). Upstream of breakdown, the spanwise‘ (swirl) velocity
represents the two-dimensional Burgers vortex to a good approximation.
The flow 1is no longer quasi-cylindrical, since non-zero transverse
(radial) velocities appear near the centerline. These velocities are
due to the divergence of the flowfield away from the axis as the
‘stagnation point is approached. The axial velocity shows approximately
a 20% deficit near the axis. At an axial location within the breakdown
region, decay of the spanwise (swirl) velocity at large radii (outside

the recirculation zone) is inversely proportional to the radius. Within
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the recirculation zone, a short annular region is observed in which the
spanwise (swirl) velocity is constant, - The transverse (radial)
velocities are near zero for all transverse (radial) locations,

In Fig. 5.15¢c, the transverse (radial) velocities have become
significant, and are nearly -the same magnitude as the transverse
(radial) velocities in Fig. 5.15a, but are of opposite sign. This
signifies that the axial location is near the aft portion of the bubble,
since the streamlines are converging,

It is revealed in Fig. 5.15d that the flow downstream of the
breakdown is quasi-cylindrical, with a small.axial velocity deficit. It
is apparent that the vortex core diameter, defined by the radius of
maximum swirl velocity, is greater downstream of the breakdown region
than upstream,

The minimum axial velocity varies with time as shown (on a semi-log
plot) in Fig, 5.16. Note that the axial velocity decays exponentially
to approximately 30 percent of its original magnitude (over a time
period of 60 units). An exponential decay of the velocity field is
indicative of a viscous time scale. By dimensional ana]yses, the
viscous time scale for the flow is given as t = 1.12 Re, which for this
case, equals approximately 100 time units.

Case 2 - Deceleration of the Free Stream
Axial Velocity

The breakdown Jjust described was very similar to breakdowns

computed in several previous investigations. In an attempt to alleviate

the problem of the non-physical results and breakdown occurring near the
inflow boundary, an additional vortex flow was computed. Here, the

vortex was imbedded in a decelerating free stream. The purpose of this
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case was to force the local Rossby number to decrease as the flow
evolved in the axial direction., The Rossby number at inflow was 0.8 and
the Reynolds number was 225, The free stream axial velocity was
linearly decelerated from 1.0 to 0.55 over the range x=1.43 to x=16.0,
thus du/dx=0.03. The results are plotted in Figs. 5.17 to 5.32. The
data in Figs. 5.18 to 5.32 is at time level t=81,28, Five different
time levels are represented in Fig. 5.17.

Velocity vectors, representing time levels t=81.28, 85.27, 87.45,
~89.63 and 91.82 are displayed in Fig. 5.17 a-e, respectively. The
general appearance of the bubble is one of asymmetry. At time t=81.28
the internal structure of the breakdown contains two major cells, or
vortex rings, rotating in opposite directions about their respective
axis., The aft vortex ring is inclined to the x-axis. Fluid enters the
bubble from near the downstream end, through the side of the bubble, and
exits the bubble at the same axial location but on the opposite side.
The inclination of the aft vortex ring also appears to be related to the
exchange of fluid in the bubble. The most forward section of the ring
corresponds to the location of fluid influx, whereas the aft section of
the ring corresponds to the location where fluid is emptied. In
addition, the velocities are considerably greater in the aft portion of
the bubble ‘than in the forward portion. The length to diameter ratio of
the bubble is approximately 1.75. The maximum diameter of the bubble
occurs approximately 0.,7L units downstream from the front stagnation
point (where L is the length of the bubble). |

The velocity vectors for the subsequent time levels indicate that
the flow within the bubble is unsteady. In addition to rotating about

the x-axis, the individual cells within the bubble tend to merge and
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a,b,c,d,e. breakdown region at different time levels,
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separate, and change in strength and location. The location at which

fluid enters the bubble appears to have shifted towards the back for the

~time levels t=89.63 and t=91.82. In addition, at these time levels, the

forward recirculation region has lost considerable coherence.

Particle traces are displayed in Fig. 5.18. In this figure, and

for all remaining figures, the time level represented is t=81.28. An
examination of the different contour plots at other time levels shows

this time level to be representative of the solution., The nine white

traces were started at the inflow plane from a radial position within

the rotational region of the vortex, A single blue trace was started at

the inflow plane, but from a radial position in the irrotational region

of the flow. The red trace was started from a position within bubble in

the forward cell. The yellow trace was started from within the "tail”

region of the breakdown. The white traces seem to define the general

shape of the bubble. One of these traces enters the forward cell,
spirals about, then exits. This seems to indicate that most of the
fluid approaching thé bubble from the front is deflected around it. The
red trace reveals that the fluid particles in the forward cell remain in
the forward cell until they are forced out of the bubble. The red trace
leaves the breakdown region from the side in the forward half of the
bubble. The yellow trace reveals that fluid enters the breakdown region
from the aft section of the bubble. The spiral traced out by this line
(as it enters the bubble) is in the opposite direction to the spiral

traced out by the blue line., The yellow line spirals about in the rear

cell before exiting the bubble from the outer edge. Note that the red

trace never enters the aft cell and the yellow trace never enters the

forward cell, This indicates that the exchange of fluid between the
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forward and aft section of the bubble is minimal. The blue trace
spirals about the breakdown essentially unaffected.

Figure 5.19 is a contour plot of the axial component of velocity.
The breakdown region is located near the center of the computational
domain., The recirculation region .is defined by the outer 0.0 level
contour line, Immediately within this region are negative valued
contour lines, Interior to these negative valued contour lines are
additional positive valued contour lines, Thus, along the centerline of
the bubble there exists a region in which no flow reversal occurs. The
contour lines intersecting the top and bottom of the domain indicate a
decelerating external flow (which was imposed by the boundary
conditions).

A contour plot of the axial component of vorticity (scaled by the
Rossby number) is shown in Fig., 5.20. The vorticity decreases
continuously as the stagnation point is approached. In the forward
portion of the breakdown region, ihe axial component of vorticity is
nearly zero. This indicates that the radial gradients of the swirl
vefocity are small, In contrast, the aft Section of the breakdown
region is characterized by high levels of W, vorticity along the axis.
Furthermore, the radial gradients of w, vorticity in this region are
high. Note that the vorticity is negative in the region of the bubble
corresponding to the approximate location of the aft vortex ring.

Figures 5.21 and 5.22 are contour plots of the W, and w, components
vorticity respectively, The 0.0 level contours are not displayed, as
was the case in Figs. 5.5 and 5.6. These components are due entirely to
perturbations of the base flow since at time t=0.0 the only non-zero

vorticity component was W, . The asymmetric, two celled structure of the
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Fig. 5.19 Contours of constant axial velocity. Contour levels range
from -0.3 to 0.9 in intervals of 0.1.

Ul
!

Fig. 5.20 Contours of constant axial vorticity, w, . Contour Tevels
range from -.0.25 to 2.5 in intervals of 0.2S.




Fig. 5.21 Contours of constant w vorticity. Contour levels range
from -1.50 to 1.50 in intervals of 0.25.

Fig. 5.22 Contours of constant w_ vorticity. Contour levels range
from -1.50 to 1.50 in intervals of 0.25.
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bubble is revealed in these contours. In addition, points on the axes
of the two vortex rings can be identified. Since the vorticity of the
two rings is of opposite sign, they rotate in opposite directions about
their respective axes. The maximum vorticity levels in these two rings
is approximately equal. A possible third vortex ring can be seen in the
outer region of the forward portion of the bubble. This ring rotates in
the same direction as the aft most vortex ring.

Vortex lines are shown in Fig. 5.23. The radial locations of these
lines at the inflow plane correspond to the locations of the white
particle traces at inflow. In the approach flow the vortex lines are
oriented in the x-direction. The transfer of vorticity from the x to
the y and z components takes place as the first stagnation point is
approached. Different orientations of the vorticity vector are
observable within the bubble. Near the centerline of the bubble, the
vorticity vector is oriented primarily in the axjal directicn, Near the
outer regions, the orientation is mostly in the circumferential
direction. Downstream of the breakdown, the vorticity vector is
oriented in the axial direction, but with a superimposed small
undulation.

A line plot of the integral of'% %2 as a function of axial location
appears in Fig., 5.24. This figure shows that the enstrophy per unit
volume of fluid remains néar1y constant in the streamwise direction
until the breakdown region is encountered. Here, large gains in
enstrophy are realized. Downstream of the breakdown region, the
enstrophy level returns to the levels present upstream of breakdown.

The volume integral of the material derivative of enstrophy is

plotted in Fig. 5.25. The distribution of enstrophy within the
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breakdown region is affected significantly by both vortex Stretching and

viscous action. The effect of viscosity is to offset the gains in

enstrophy due to stretching. The enstrophy changes due to diffusion

across the boundaries of a specific material volume are insignificant.
The axial location at which the enstrophy is a maximum agrees with the
location in where the rate of change of enstrophy is zero.

Contour lines of pressure are shown in Fig. 5.26. The minimum

pressure at any axial location occurs along the centerline of the

/
vortex, with the absolute minimum occurring at inflow. A strong adverse

gradient is encountered by the fluid as it approaches the breakdown

region. Within the forward part of the breakdown region, the pressure

is nearly constant. A local minimum occurs in the aft portion of the

bubble. This point corresponds to the location of minimum axial

velocity. The pressure distribution is asymmetric. This may correspond

to the orientation of the aft vortex ring.

The pressure and axial velocity along the vortex centerline are

plotted in Fig. 5.27. A strong adverse pressure gradient extends from

the inflow boundary to the axial location x=3.2, corresponding to the

first stagnation point., From x=3.2 to x=7.2 a decrease in pressure is

accompanied by an increase in the axial velocity. The axial velocity

then decelerates rapidly even though the pressure continues to

decrease. Downstream of the breakdown region, the centerline axial.

velocity is accelerated toward its free stream value. Stagnation points

are observed at axial locations x=3.0, 5.5, 8.3. and 12.3.

Since the external flow was decelerated in the axial direction, it

was expected that a corresponding adverse pressure gradient would

exist. For clarity, the pressure variation along the top computational
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Fig. 5.26 Isobar contours: contour levels of -0.6 to 0.0 in intervals
of 0.1.
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Fig. 5.27 VYariation of axial velocity and pressure along vortex
centerline.
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boundary (y=10.0, z=5.0) is plotted as a function of axial location in
Fig. 5.28 using a magnified scale. A rapid change in the slope is
apparent at x=1.5. This corresponds to the approximate axial location
in which the imposed deceleration of the free stream axial velocity
begins. The pressure then increases linearly until the axial location
corresponding to the onset of breakdown is reached. Downstream from
this loéation the pressure decreases and then increases. This is due to
the curvature of the streamlines (displayed in Fig. 5.29). Experimental
wall pressure distributions measured by Sarpkaya [25] in a tube and vane
apparatus behaved in a similar manner. Note that the maximum values of
dp/dx along the computational boundary are much smaller in magnitude
than the values of dp/dx occurring within the vortex core.

Figure 5.29 is a contour plot of the total pressure, q2/2 + p. As
previously mentioned, where viscous forces are insignificant and the
flow is steady, these lines can be considered as streamlines. In this
sense, the aft recirculation cell is clearly visible.

The volume integral of the material derivative of energy is plotted
in Fig. 5.30. The interpretation of the varioUs lines follows from the
description of 5.13. Note that the rate of change of energy due to .
pressure work follows the total rate of change of energy almost
exactly. These lines appear on top of one another in Fig. 5.30. As is
required, the rate of change of internal energy is positive throughout
the flow. The magnitude of this change is small when compared to the
rate of change of kinetic energy thrbughout most of the region. The
plot shows that the rate of change of kinetic energy is due primarily to
differential pressure forces acting on a material volume. The viscous

forces responsible for changing the kinetic energy are small.
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Fig. 5.28 Computed pressure distribution along the top computational
boundary.

Fig. 5.29 Contours of total pressure: contour levels of -0.4 to 0.6 in
intervals of 0.1.
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The integral of the volume averaged kinetic energy has been
computed and plotted as a function of axial location in Fig. 5.31. The
kinetic energy is observed to decrease by approximately 50% between the
inf1oQ plane and the axial location, x=8.0. Downstream of this point,
the kinetic energy increases slightly and then remains constant.

Axial, transverse (radial), and spanwise (swirl) velocity profiles
at four different axial locations are plotted in Fig. 5.32 a-d for time
level t=81.28, The axial location of the profiles in Fig. 5.32a is
upstream of breakdown (x=0.41). The profiles in Figs. 5.32b and 5.32c
represent axial llocations within the breakdown region (x=5.46 and
x=7 .36, respectively). Profiles from downstream of the breakdown region
are plotted in Fig. 5.32d (x=13.92). 'For reference purposes, the first
stagnation point 1is located at .x=3.0. Upstream of breakdown{ the
spanwise (swirl) velocity profile approximates the two-dimensional
Burgers vortex. The radial velocity is small and the axial velocity
profile nearly uniform., Within the breakdown region, as revealed in
Figs. 5.32b and 5.32¢c, the flow is no longer symmetric. Transverse
(radial) velocities are significant and the spanwise (swirl) velocity
profiles no longer approximate Burgers vortex. At both axial locations
within the breakdown, the axial velocity profiles have a local maximum
and two local minima, The profiles in Fig. 5.32d, downstream of the
breakdown region, reveal a large axial velocity deficit near the vortex
centerline. The spanwise {swirl) velocity profiles reveal a solid body-
l1ike rotation near the centerline. At the edge of the core, the maximum
spanwise (swirl) velocities are considerably less than values occurring

upstream of the breakdown region.
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Fig. 5.30 Contribution of various energy transport terms to the
integrated rate of change of energy.
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Fig. 5.31 VYariation of integrated kinetic energy with axial location.
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A comparison of this computed breakdown structure (at t=81.28) with
mean streamline and axial velocity profiles constructed by Faler and
Leibovich [27] using experimentally measured data is shown in Fig.
5.33. The profiles given by Faler and Leibovich are for the upper half
of the bubble only. Although the Reynolds number for the expefimenta1
case was of order 1000, the overall qualitative agreement regarding the

structure of the bubble is excellent.
Other Cases

Severa] additional test cases were computed to determine the effect
of a jet-]fke axial velocity profile on vortex breakdown. The results,
although not available in the form of line and contour plots, will be
discussed for the purposes of comparison.

Several additional cases were computed in which the vortex was
imbedded in a uniform external flow. For two of these cases the Rossby
number at inflow was (.80 and the Reynolds number; 225. The axial
velocity profile at inflow was given by Eq. (4.6). For the two test
cases, 5, was chosen és 1.0 and 0.5, respectively.

‘The purpose of these two computations'was to determine the effect
of viscous diffusion on the flow, as measured by the local Rossby
number, In both cases, the local Rossby number increased in the
streamwise direction as the flow evolved. This was because the rate of
decrease of the solid body rotation of the vortex (near the centerline)
was greater than the rate of decrease of the axial velocity component

' *

(at the radius of maximum swirl velocity). The radius, r , increased

slightly in the streamwise direction. Breakdown did not occur, since at
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Fig. 5.33 Comparison of the numerical solution (a) at t=81.28 with
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inflow the Rossby number was above critical value and, as the flow
evolved, it remained supercritical everywhere.

Two additional test cases were computed with the parameter, 5,
being chosen as 1.0 and 0.5, respectively. The Reynolds number was 225
and the Rossby number at inflow, 0.625. The purpose of the tests was to
determine if the jet-like axial velocity profile would delay the onset
of vortex breakdown. The computations were not carried out to
completion because it became apparent that breakdown would occur near
the inflow boundary. This was analagous to the results that were
obtained for the case R0=0.625, Re=225 and 5= 0.0, discussed in det$i1
previously.

Tests to ascertain the effect of grid size and domain length on the
time evolution of the solution were performed. In all éases the Rossby
number and Reynolds number were maintained at values of 0.5 and 225,
respectively. The vortex was imbedded in a uniform free stream. The
inflow axial velocity profile was uniform, The solution was computed
over three different domain  lengths; 16,0, 24,0, and 32.0
(x-direction). The stretching coefficient, o, present as a parameter in
Eq. (4.16), was equal to 1.15 for the cases hx=16.0 and hx=24.0. For
the case h,=32 it was set equal to 1.25. This resulted in mipnimum cell
sizes of 0.13, 0.195 and 0.46 for the domain lengths 16.0, 24.0, and
32.0, respectively. The stretching parameter e, (present in Egs. (4.17)
and (4.18) for the y and z direction grids) was set equal to 4.5. The
domain in the y and z direction was given by O<y<l0 and 0<z<10. In
each case, the minimum axial velocity was plotted as a function of

time. s results were plotted in Fig. 5.34. The results showed that
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the effect of increased domain length and cell size had a minimal effect
on the time evolution of the solution.

It has been suggésted that vortex breakdown is a consequence of
inertial wave disturbance on the swirling flow. The azimuthal modes
(excluding n=0) of these disturbances correspond to the asymmetric
internal structure of the bubble. Any flow variable can be described

by Fourier series in the azimuthal (8) direction in the form:
L Clx,r,t) o~ine
n

It is of interest to examine the Fourier coefficients of the radial
velocity component in front of and. within the breakdown region. In
order to compute the coefficients, the original data were interpolated
to produce data at specified cylindrical (r,6,x) locations. The Fourier
coefficients (Cn) were then easily computed using Fast Fourier Transform
techniques. For these calculations, A8 was taken as ten degrees (n/18)
which resulted in 36 spacial locations along a given radius. The
coefficients were tabulated in magnitude, phase angle form}for the modes
n=0,1,2,3. These results, for combinations of (x,r,t), appear in Tables
5.1 and 5.2. The magnitudes of the coefficients for all higher mode
numbers were insignificant, thus they wére not tabulated.

A brief investigation into the upstream propagation of wavelike
disturbances was performed. The purpose of the tests was to determine
if appropriately defined wavelike disturbances introduced at the outflow

boundary would propagate upstream. Disturbances of the form

2
dv/dy/dw/dz = e " A sin(2n fot) (5.3)




Table 5.1

Complex Fourier Coefficients for the Radial Velocity Component

(x,r) n=0 n=1 n=¢ n=3
(0.56,0.5) (0.03,0.0) (0.01,3.11) (0.00,-1.82) (0.00,-3.09)
(0.56,1.0) (0.04,0.0) - (0.01,3.09) (0.00,-1.96) (0.00,-0.41)
(0.56,1.5) (0.04,0.0) {0.01,3.14) (0.00,-1.94) (0.00,-0.68)
(0.56,2.0) (0.03,0.0) (0.00,3.04) (0.00,-1.47) (0.00,-0.83)
(0.56,2.5) (0.03,0.0) (0.00,2.95) (0.00,-1.03) (0.00,-0.89)
(4.15,0.5) (0.00,3.14) (0.00,2.94) (0.00,-0.98) (0.00,0.88)
(4.15,1.0) (0.08,0.0) (0.00,-0.78) (0.00,-0.43) (0.00,-2.22)
(4.15,1.5) (0.23,0.0) (0.01,-2.29) (0.01,3.05) (0.00,-0.90)
(4.15,2.0) {0.24,0.0) (0.01,-2.77) (0.00,-0.91) (0.00,-1.47)
(4.15,2.5) (0.18,0.0) (0.01,-2.76) (0.00,0.66) (06.01,-1.94)
(6.95,0.5) (0.00,0.0) (0.02,-2.92) (0.00,-0.67) (0.00,2.78)
(6.95,1.0) (0.10,0.0) (0.04,2.51) (0.02,-2.40) (0.01,-1.19)
(6.95,1.5) (0.17,0.0) (0.03,1.25) (0.02,-2.83) (0.0,-1.87)
(6.95,2.0) (0.16,0.0) (0.02,1.13) (0.01,-2.60) (0.00,-0.92)
(6.95,2.5) (0.16,0.0) (0.01,1.35) (0.00,2.52) (0.00,-0.72)
(8.62,0.5) (0.05,0.0) (0.05,-0.46) (0.00,-0.75) (0.00,-1.26)
(8.62,1.0) (0.03,3.14) (0.02,-1.17) (0.00,0.07) (0.00,2.74)
(8.62,1.5) (0.10,3.14) (0.02,-2.06) (0.00,2.50) (0.00,-2.38)
(8.62,2.0) (0.14,3.14) (0.03,-2.27) (0.00,3.12) (0.00,-2.18)
(8.62,2.5) (0.12,3.14) (0.03,-2.06) (0.00,0.01) (0.00,-3.00)
(12.40,0.5) (0.01,3.14) (0.07,-1.45) (0.00,2.10) (0.00,-0.57)
(12.40,1.0) (0.01,3.14) (0.04,-1.56) (0.00,1.83) (0.00,-0.02)
(12.40,1.5) (0.02,3.14) (0.03,-1.67) (0.00,1.57) (0.00,1.77)
(12.40,2.0) (0.02,3.14) (0.02,-1.71) (0.00,1.81) (0.00,2.45)
(12.40,2.5) (0.01,3.14) (0.02,-1.79) (0.00,1.71) (0.00,-2.17)
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Table 5.2

Complex Fourier Coefficients for the Radial Velocity Component

(x,r) n=0 n=1 n=¢ n=3
(0.56,0.5) - (0.04,0.0) (0.01,3.08) (0.00,2.29) (0.00,-2.39)
(0.56,1.0) (0.05,0.0) (0.01,3.09) (0.00,2.42) (0.00,-0.45)
(0.56,1.5) (0.05,0.0) (0.00,3.04) (0.00,2.57) ° (0.00,-0.79)
(0.56,3.0) (0.04,0.0) (0.00,2.93) (0.00,2.79) (0.00,-0.92)
(0.56,2.5) (0.04,0.0) (0.00,2.82) (0.00,3.09) (0.00,-0.92)
(4.15,0.5) (0.02,0.0) (0.02,-2.27) (0.00,-2.50) (0.00,1.55)
(4.15,1.0) (0.02,0.0) (0.01,-2.60) (0.00,-1.94) (0.00,0.71)
(4.15,1.5) (0.19,0.0) (0.01,-2.11) (0.00,-1.34) (0.00,0.87)
(4.15,2.0) (0.27,0.0) (0.02,-2.29) (0.00,-0.33) (0.00,0.29)
(4.15,2.5) (0.23,0.0) (0.01,-2.28) (0.00,0.39) (0.00,-2.54)
(6.95,0.5) (0.01,0.0) (0.05,2.78) (0.01,-1.50) (0.01,2.26)
(6.95,1.0) (0.01,0.0) (0.05,-2.58) (0.01,-0.54) (0.01,-2.90)
(6.95,1.5) (0.00,0.0) (0.05,-1.32) (0.01,0.85) (0.00,-1.97)
(6.95,2.0) (0.03,0.0) (0.05,-0.57) (0.02,1.77) (0.01,-2.56)
(6.95,2.5) (0.13,0.0) (0.01,0.61) (0.01,2.91) (0.00,-1.27)
(8.62,0.5) (0.02,3.14) (0.07,0.52) (0.06,0.05) (0.02,1.74)
(8.62,1.0) (0.07,0.0) (0.08,1.20) (0.01,-0.67) (0.01,1.74)
(8.62,1.5) (0.07,0.0) (0.05,1.46) (0.01,-2.43) (0.01,2.60)
(8.62,2.0) (0.02,0.0)- (0.04,2.86) (0.01,-0.00) (0.01,-2.85)
(8.62,2.5) (0.01,3.14) -(0.06,-3.00) (0.03,-0.13) (0.01,3.03)
(12.40,0.5) (0.02,3.14) (0.10,-1.76) (0.00,1.96) (0.00,1.26)
(12.40,1.0) (0.06,3.14) (0.05,-1.97) (0.00,1.87) (0.00,1.64)
(12.40,1.5) (0.10,3.14) (0.03,-2.35) (0.00,2.86) (0.00,1.89)
(12.40,2.0) (0.11,3.14) (0.02,-2.57) (0.00,0.95) (0.00,2.74)
(12.40,2.5) (0.09,3.14) (0.01,-2.42) (0.00,0.48) (0.00,-2.70)
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were introduced where -the qmplitude. A=0.03 and the frequency f=4.0.
Three test cases were investigated. In two cases the vortex was
imbedded in a uniform free stream, In one of these cases the Rossby
number was 0.5 and in the other case the Rossby number was G.8. In the
third case the. Rossby number at inflow was 0.8 and the vortex was
imbedded in a decelerating flow. [In each case the solution obtained
with forcing at the outflow boundary was subtracted from a base flow
solution. This base flow was the solution that resulted from identical
inflow and initial conditions, but without forcing at outflow. For the
specific forcing frequency and forcing amplitude combination applied, no
disturbances were seen to propagate upstream (for time t<8), A
discussion of the motivation for these tests follows.

The theories of Squire [7] and Benjamin [8] pertain to stationary
disturbances present oh columnar vortices. Randall and Leibovich [18]
have shown that for upstream propagation to be possible, the base
vortical flow must change in the axial direction. This would be the
case if an adverse pressure gradient were encountered. This pressure
gradient could be self-induced (through viscous-diffusion) or externally
imposed. Thus the motivation for the threé' previously mentioned
tests. That the disturbances did not propagate upstream in the cases
where the vortex was imbedded in a uniform free stream was expected.
These solutions were allowed to develop for 8 time units, thus the
vortices remained nearly éylindrica] (no variations were present in the
axial direction). In the third case it was expected that some typé of
disturbance would have propagated upﬁtream to the critical station.
Possibly the forcing frequency/amplitude combination that was imposed

resulted in waves that were damped immediately.
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CONCLUSIONS

Numerical solutions of the fully three-dimensional Navier-Stokes

equations were obtained for vortex breakdown. The numerical algorithm

was an implementation of the velocity-vorticity formulation developed by

Gatski, Grosch and Rose [39]. In this formulation, both the velocity

and vorticity vectors are second order accurate in space and time. The
solutions were presented for unconfined vortices of the leading edge
type and were parameterized by the Rossby number and the Reynolds

number. Breakdown was predictable using the local Rossby number as the

critical parameter,

The present analysis supports Squire's [7] earlier conjecture that.

the physical mechanism responsible for breakdown is the growth of

wavelike disturbances along the vortex core, The Coriolis acceleration

produces a restoring force which is responsible for the creation of the

disturbance waves. This effect was described in terms of the Rossby

number by examining the theoretical, computational and experimental

results available in the literature. The resulting correlations showed

that when the Rossby number of the base vortical flow decreased to

approximately 0.6, breakdown occurred.
The Rossby number criterion may find practical applications in the

field of aeronautics. For instance, it would be advantageous if vortex

breakdown could be induced in the case of trailing wing tip vortices
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generated by commercial aircraft. Retarding vortex. breakdown is
desirable in the case of leading edge vortices generated by delta wing
type military aircraft. In applications such as swirl combustors, the
internal structure of the breakdown region is of importance. The size,
shape and stability of the recirculation zone are critical to flame
stability and performance. Optimal rates of entrainment and mixing
could be predicted through a numerical simulation of the process.

Detailed results of vortex breakdown were obtained for two
numerical simulations. In the first case, (Ro=0.625, Re=225) the vortex
was imbedded in a uniform free stream. In the second case, (Ro=0.8,
Re=225) the vortex was imbedded in a decelerating free stream. The
internal structure of the resulting solutions differed dramatically.

The structure resulting from the first case consisted of a single,
steady, nearly symmetric toroidal recirculation zone. The length of the
bubble was defined-by the two existing stagnation points. The structure
in the second, decelerating case contained multiple internal cells, or
"ring" vortices. In addition, the flow within the bubble was unsteady,
asymmetric and dominated in the aft portion by-large amplitude velocity
fluctuations.

The discrepancy between the results of the first case and the
experimental results may be attributed to the proximity of the numerical
breakdown to the inflow boundary. In that case, the fixed boundary
conditions at inflow act as an artifical critical barrier to the
propagation of waves. At the inflow bbundary, the amplitude of a
standing wave grows to the extent that stagnation points and reversed
flow appear along the axis. In the decelerating case, the critical

condition arises from the Rossby number effect in a manner analagous to
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expefimental findings. The solution is not contaminatéd by the inflow
boundary layer or by.an artifical critical condition. In addition, the
unsteady features of this case may be due to disturbances originating
downstream since the f16w was imbedded in the decelerating stream. The
bubble in the first case was imbedded in a uniform free stream, thus it
is expected that downstream disturbances should be damped immediately.
This would account for the nearly steady features of that flow. This
could not be confirmed by the tests which employed forcing at the
outflow boundqries.

For the case Ro=0.8, Re=225v the radial velocity component was
expanded in a complex Fourier series in the circumferential direction.
An examination of the resulting Fourier coefficients cn(x,r,t) has shown
that the n=0 mode is the dominant mode at a location slightly upstream
of the first stagnation point for all time levels. At time level
t=81.28, the magnitude of the n=1 mode in certain areas within the
breakdown region is significant. At the later time level t=91.82, the
magnitude of the n=1 modes within the breakdown region has increased.
This indicates that the asymmetric structural- features of the bubble,
due primarily to n=1 mode disturbances, have been enhanced with time.

In conclusion, theoretical results, interpreted in terms of a
Rossby number, give conditions favorable for the occurrence of
breakdown., By considering the flow to be three-dimensional, unsteady
and asymmetric, the author be]ieQes the first correct numerical
representation of the internal structure of the “"bubble"” type breakdown

was computed.
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APPENDIX A
EXPONENTIAL TRANSFORMATION

Gatski, Grosch and Rose [39] employ an exponential transformation

of the form

o = e Bpltt)] i

(Al)

where [Bn] is a constant matrix, to eliminate the explicit appearance of
the vortex stretching term from the vorticity transport equation. The
procedure is outlined below.

The vorticity transport equation is written in the form

dw i g S
31 + ujw ' w’u ' vw 5 (A2)
i ; Bn(t-tn) ;
let u ' = Bn, a constant at time level n. Introduce w = e g

into the above equation., This results in the following transformed

equation.
{8 (t-t )] . (B (t-t )),..i [B (t-t )] :
n n 1 n n°-ag n n i
Bne C +e a-—*e UJ-C,J-
(B (t-t )] . (B (t-t )] .
- Be N Ted e M0 c‘,jj (A3)

It is apparent that the vortex  stretching term is eliminated

through the time derivative. The resulting equation appears below.

=+ U, c',. = vc',.. (A4)

119




APPENDIX B

REDUCTION OF X-SWEEP VORTICITY EQUATIONS TO
TRIDIAGONAL FORM

The reduction of the x-sweep vorticity equétions to tridiagonal
form is shown below. For the sake of clarity only appropriate indices
are expressed. The derivation of the y and z Sweeps are analogous, with
only the final results being expressed.

The 3-D advection diffusion equation for the transformed vorticity
and the necessary averaging conditions appears below as Egs. (815 to
(B14). Note that the (u,v,w) velocity components represent averages at

cell centers.

5tc + uaxc + véyc + w&zc = v(6x¢ + §y¢ + 5ta) (B1)
(u.x - hquéx) ¢ = éxC (B2)

, =hgb)¢s= B3
(uy yqy y) ¢ 6yc (B3)
(b, = h,q8,) & =82 (84)
T=ul -h p 6o (85)
u't By X "X X
wE=nt-nl p sy (36)
t y y Tyy
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p..{.;=u.l;-h p.6_% - (87)
where t z zzz (
q(e )
- Ox - y
hx = 5= (88) Dy = - (B12)
Yy
n, =%y- (89) a(s,)
DZ = ——32— (B13)
= A2
hz 2 ( 810) and, t = at (B14)
’ 7 .
q(ex)
px = E;__- ( B11)

The first step is to eliminate the n;-bb time level dependence from

equation (Bl) as follows. Combine the identity

o1
r«sc=utc-c" 2

¢ (B15)

with Eqs. (BS5) through (7) to obtain the following three vector

equations.

= _ = 2 = = n- yé

TétC = uxC hx Dx6x¢ o (B16)
- - 2 - - n-%@

6 ¢ = g -nh 65 ¢~ ¢ (B17)
t py ypy y

5% = pl - K 6?,—7;"'1/2 (818)
t e z P2°;

When Egs. (B16) to (B18) are each combined with Eq. (Bl), three
systems of equations result, each of which can be solved simultaneously
for a component of the viscous terms éxi, éyl and 523.

The systems appear below as Eq. (B20).

K, 1 1 5,9 1 1 1 us ¢
K 7 = - R
vT 1 y 1 6y¢ T 1 1 1 voyc
1 1 K 8 % 1 1 1 Wé
Z b4 !
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1 0 0 By ~
- - ol
+ /o 1 o ut - n=*2 (B19)
- - e 1
0o 0 1 LE -T2
X
where
e,
K, = ===+ 1 (B20)
hz p
K =L+ (B21)
y vt - .
th
K. = 2%+ 1 (822)
2z vt

Take the inverse of the matrix on the left side of Eq. (B19). This

is given as

11 %2 %13

% %21 %22 %3 (823)
%31 432 ek
where

B2+ KKK = (K4 K+K) (B24)
2y = (KK, = 1) .(325)
@, = - (Kz - 1) | (B26)
a3 ® (1=K) (B27)
cxzi = -(k, - 1) . (B28)
ay, = (KK, = 1) (829)
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@5y = -(K_=-1) (830)

X

xq; = (1- Ky) (B31)
a3, = -(Kx - 1) | (B32)
x3q = (KxKy -1 ' (B33)

Multiply matrix Eq. (Bl9) by matrix (B23). This results in the

following expressions for the viscous terms,

- n-Yy
& =5 Loy )

n /2 -
(P-XC C ) + alZ(uyC g

-- - N- 1/2
*a. (uzC g )}

+ a13)(u6x.t; + v6 C + wé_C) (B34)
- n- /2)

- -np=1
6¢=-—1—{a (uxC-Cn /2)+<z (uym-C

l - - -
+ T (czz1 *ay, * a23)(u6xc + .véyC +-wézc) (B35)

ol
+ag el -3 =2y

+

(a3l ag, * cx33)(u6xC + véyC + wéZC) (836)
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Only Eq. (B34) is needed for the derivation'of_the x-sweep tridiagional
system., Equations (B35] and (B36) are needed for the y-sweep and z-
sweep derivations respectively, Performing the difference operation

indicated on the left side of Eq. (B34) results in the following

expression
- - 2 - =n-1p
(°i+1/2 °i-1/2) BV lay, we-c :
| S |
_zn-lh _ s =l
+ alz(uyc 3 ) + a13(uzc c )}
+ 8 (e v e +a ) (UB T+ V6 T+ whE) (837)
By G11 t%p t 3llus e Ve L we .t :
At
where Kx == (B38)
b 4
Let Y, =15 (1 £ q(e,)) (B39)

The appropriate combination of Eg. (B2) and Eq. (B39) results in

the following expression for ¢,
owing exp n °1-LQ

+ - - - -
YX Qi_ 1/2' éxC ~Y Qi*’ 1/2 . (840)

Multiply each side of Eq. (B37) by y; and substitute the result into Eq.
(B40). The resulting expression for ai+'L@ is given as,

2t

¢i+ 1/2 = B\))\x

= _=n-lp = _=n-1
{all (b&-¢ ) + alz(uyc g )

- -n=1
+ (uzC -z k)}

“13
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g ey ey e 1] e E
+
"% ax - -
" (al1 + @, * al3)[v6yc + WGZC] (B41)

The expression for ¢i 1, obtained in a similar manner, appears
=R

below.
-2y - , )
X A ) = _ =n-1
= - + -
Yi-1p " B lay (we - ¢ PR )
A
o+ T, (uzC d )}
X AX -
t =g tayy + oy * o) + 1] 5%
v, ' ax
x - -
s (o o, a13)[v6yc + wézc] (B42)

Index Eq. (B42) by i+l and equate fluxes of ¢ across a cell face to

obtain the folﬁowing equality.

- + -
R P SR PR

i

11 "o o3 t el

i+l

+ . -
- [WR” (o) +ap) o) + l]éxc,i
- Y
. _z Y
= C alz(uyC g ) i+l
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+ - ol
+ C alZ (p.yC o ) ;
- S T
n= i
*C ooy (ui-g Nie1

- n-1
+ - n- 4
+C T, _(uZC o )

"loape je1 T C 9

- - N- 1/2 -+ - A= 1/2 i
1

<+

Rolayy * @ * apg) [ve &+ w8l

(B43)

+ - -
+ R (all *ag, t a13)[v6yc + wéZC] ;

where C” = e (B44)

and R” = e (B45)

Performing the discretizations, rearranging and redefining yxt as
v.¥ =12 qle) | (B46)
X X

results in the tridiagonal form of the equations for the x sweep given

below,
a a uA
-1 -, 11 1 x - :
T Ay ) Sx],i+l “iv 372
@ uA
R T S Y
i+l " x 8 8 x'1’+1
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P P L -
M [Yx (== + ) * Sx]’i} Ci+L@
R R S O 1
A i [YX (—B—' -ﬁ_)"‘ Sx]' g 1- /2
ZYX a‘i E n- 1/2_ ZYX a'i - n- l/2
Xx P i+l e Axs il

+

B B i+l 7 i+l,5- 1y
Y * a a, VA
X 12 1y =
( + M. ¢, .
A, B Bt g+,
+ -
X (a12 alvhy E, .
AX g B i 1, /2
x a13 . alwk 1 E.
A B B i+l Citl,k+ Yy
LS I e ooz
A, B B i+l >i+l,k=- 1,
+ -
a xT, WA
X 13 1 -
{ + ) z.
A B 3 i,k+ 1y




a a, wh
X 13 1%z
+ ( - ) ws (B47)
X, P B Viak-1
where @ =@+ a4, * . (B48)
kax
and SX = T (849)

The tridiagonal equation for the y sweep takes the form

Ezvx

-l - -
7 Syl 501 T 32

j+l

[+ 4
=22

-1 .« a2'v)\ |
B3 5 - b+ 5]

+

Calpr Joz, %Y -
)\J. [ ( 3 + 3 ) Sy],j} CJ+1/2
R R T -
Mihy ST s )5y,
. -ZYy % z 0 1/2_ aYy 2] < n- L,
A . +1 A
yB j*#1 ys i
+ Y; (021 + a2 “"x) E
}\y 8 B j+1 i+ 1/2 »J+l
Y; 21 EZU)‘X
= (—F- - -_F-) C._1/ i+1
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+ ) + 3 ) ; i+'yé,j
+ -
. YXA (a21 i azuk E_ ]/ .
>\y B B j 1= 42,3
- a T WA
+ Z (23+ 2 ) E.
N, P B o 3tLike Yy
Y B T WA -
+ == ( 23 25 Mo T,k b
y i+l hT
+ -
Y a a, WA
y 23 2z =
* N S = G el
Gy, B
y 3 p4 =
My ( E—'* 3 ) . Cj’ k- yé (B50)
Yy J
where @y = ay + Ty + Tyq | : (B51)
2VA
and s, = Ayy (852)

The tridiagonal equation for the Z-sweep takes the form

! B33 . B¥A

o1 (12 5+ =59 = 8,0k B 372

a WA
F Ly [ "fzﬁ‘z) * 5] ke
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-l o= 933 %W, -
Mily g e 7t Sz]'k} % + 1,
! T33 %, =
A e S|k G-y
- - 2Yz %3 ;- L, ZYZ 3| =n-1
KZB K+1 k+1 AZB K k
2 %1 R -
MR iy e “ia Ly kel
2 kel T 720
Te | B .
r4 1 X
+ ( ) G
A\, B I P ER VI 251
Y- a :x ui
r ;331+ 3sx’ Sl
z k 2>
R R LN
z 1 X
+ ( ' )| ¢,
X, B B Tim Y Lk
= YZ (a32 + G3V>\y E 1
+ YZ (a32 - a'JV}‘y E 1
A, B B kep 9 2,k+1

1M




where

and

Yz - %32 VA
X, "B B

T Y
X, ‘B B

ZVXZ

Az
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APPENDIX C

DERIVATION OF PRESSURE EQUATION

The three scalar components of the Navier-Stokes equations are

given by
TN TR T N B
R PN e
R N DR S

Take the partial derivative of Eq. (Cl) with respect to x, Eq.

with respect to y and Eq. (C3) with respect to z and find

azu ov du + azu

d
GACUME B & R T

- a2 -1 .2
aw du %y _ " a%p d .2
W ORIz T g ax? V3 (v7u)
oy v, v an? o afy
at "dy dy dx Xy oy ay
2 2
d°v. _ _13p 3 (2
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(Cl)

(C2)

(C3)

(C2)

(C4)

(CS)




2
3 dw du 3w W ov dw A" w dw
3T 37 ¢ 323x  Y3xez Y3 y T Vayez 63?)

2 2
dw__12 g d 2
+ w 762 5 ~ + v —az (V W)

2 2 2
o) ou ov ow ou v ow

3t 'ox y dz ¥x 3X
+ Qﬁ.gﬂ +.2! 91) + u (azu + 231_ + 93!—)
0x 3z 0y 09z ax? oxdy dx0z
+y (dzv + azu + azw + W (azu + azv + azw)
2 J3xdy Qdyaz dxdy  dyoz L. 2
dy 3z
-1 22 d 2 ) 2 d 2
=3 V'p + v [3; (vCu) *'Sy (v°v) *~3§ (v W)]
Imposing the continuity condition
du dv | oW _
% + 3; +.3E =

allows Eq. (C7) to be written as:

2 2
du OV W dv du Ow du _ dw dv, _ -1 2
& * & & Am ey * mm e T e

Expand the first three terms on the left side of £q.

follows:
2 2 2 2
(30 + (XY + (&) (L, M
X oy 2z ox oy 2z

- (au 8v , du dw _ dv du + 8V oW _ 3wdu _  ow av)

3x 3y 3x 3z By 3x  dy 32 | Bz Bx I By

191N

(C6)

dv 3du

oy

(C7)

(C8)

(C9) as

(C10)



Imposing the continuity equation on Eq. (Cl0) and substituting the

results into Eq. (C9) results in the following elliptic equation for the

pressure field.

vzp - _Zp[av ou  Ow du 0w dv _dudv _dudw _2dvdw

X3y "X 3z T3y 3T X 3y " 3x 3z~ 3y 3% (c11)
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